doctr.io - docTR documentation (original) (raw)
The io module enables users to easily access content from documents and export analysis results to structured formats.
Document structure¶
Structural organization of the documents.
Word¶
A Word is an uninterrupted sequence of characters.
class doctr.io.Word(value: str, confidence: float, geometry: tuple[tuple[float, float], tuple[float, float]] | ndarray, objectness_score: float, crop_orientation: dict[str, Any])[source]¶
Implements a word element
Parameters:
- value – the text string of the word
- confidence – the confidence associated with the text prediction
- geometry – bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to
- size (the page's)
- objectness_score – the objectness score of the detection
- crop_orientation – the general orientation of the crop in degrees and its confidence
Line¶
A Line is a collection of Words aligned spatially and meant to be read together (on a two-column page, on the same horizontal, we will consider that there are two Lines).
class doctr.io.Line(words: list[Word], geometry: tuple[tuple[float, float], tuple[float, float]] | ndarray | None = None, objectness_score: float | None = None)[source]¶
Implements a line element as a collection of words
Parameters:
- words – list of word elements
- geometry – bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to the page’s size. If not specified, it will be resolved by default to the smallest bounding box enclosing all words in it.
Artefact¶
An Artefact is a non-textual element (e.g. QR code, picture, chart, signature, logo, etc.).
class doctr.io.Artefact(artefact_type: str, confidence: float, geometry: tuple[tuple[float, float], tuple[float, float]])[source]¶
Implements a non-textual element
Parameters:
- artefact_type – the type of artefact
- confidence – the confidence of the type prediction
- geometry – bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to the page’s size.
Block¶
A Block is a collection of Lines (e.g. an address written on several lines) and Artefacts (e.g. a graph with its title underneath).
class doctr.io.Block(lines: list[Line] = [], artefacts: list[Artefact] = [], geometry: tuple[tuple[float, float], tuple[float, float]] | ndarray | None = None, objectness_score: float | None = None)[source]¶
Implements a block element as a collection of lines and artefacts
Parameters:
- lines – list of line elements
- artefacts – list of artefacts
- geometry – bounding box of the word in format ((xmin, ymin), (xmax, ymax)) where coordinates are relative to the page’s size. If not specified, it will be resolved by default to the smallest bounding box enclosing all lines and artefacts in it.
Page¶
A Page is a collection of Blocks that were on the same physical page.
class doctr.io.Page(page: ndarray, blocks: list[Block], page_idx: int, dimensions: tuple[int, int], orientation: dict[str, Any] | None = None, language: dict[str, Any] | None = None)[source]¶
Implements a page element as a collection of blocks
Parameters:
- page – image encoded as a numpy array in uint8
- blocks – list of block elements
- page_idx – the index of the page in the input raw document
- dimensions – the page size in pixels in format (height, width)
- orientation – a dictionary with the value of the rotation angle in degress and confidence of the prediction
- language – a dictionary with the language value and confidence of the prediction
show(interactive: bool = True, preserve_aspect_ratio: bool = False, **kwargs) → None[source]¶
Overlay the result on a given image
Parameters:
- interactive – whether the display should be interactive
- preserve_aspect_ratio – pass True if you passed True to the predictor
- **kwargs – additional keyword arguments passed to the matplotlib.pyplot.show method
Document¶
A Document is a collection of Pages.
class doctr.io.Document(pages: list[Page])[source]¶
Implements a document element as a collection of pages
Parameters:
pages – list of page elements
show(**kwargs) → None[source]¶
Overlay the result on a given image
File reading¶
High-performance file reading and conversion to processable structured data.
doctr.io.read_pdf(file: str | Path | bytes, scale: int = 2, rgb_mode: bool = True, password: str | None = None, **kwargs: Any) → list[ndarray][source]¶
Read a PDF file and convert it into an image in numpy format
from doctr.io import read_pdf doc = read_pdf("path/to/your/doc.pdf")
Parameters:
- file – the path to the PDF file
- scale – rendering scale (1 corresponds to 72dpi)
- rgb_mode – if True, the output will be RGB, otherwise BGR
- password – a password to unlock the document, if encrypted
- **kwargs – additional parameters to
pypdfium2.PdfPage.render()
Returns:
the list of pages decoded as numpy ndarray of shape H x W x C
doctr.io.read_img_as_numpy(file: str | Path | bytes, output_size: tuple[int, int] | None = None, rgb_output: bool = True) → ndarray[source]¶
Read an image file into numpy format
from doctr.io import read_img_as_numpy page = read_img_as_numpy("path/to/your/doc.jpg")
Parameters:
- file – the path to the image file
- output_size – the expected output size of each page in format H x W
- rgb_output – whether the output ndarray channel order should be RGB instead of BGR.
Returns:
the page decoded as numpy ndarray of shape H x W x 3
doctr.io.read_img_as_tensor(img_path: str | Path, dtype: dtype = torch.float32) → Tensor[source]¶
Read an image file as a PyTorch tensor
Parameters:
- img_path – location of the image file
- dtype – the desired data type of the output tensor. If it is float-related, values will be divided by 255.
Returns:
decoded image as a tensor
doctr.io.decode_img_as_tensor(img_content: bytes, dtype: dtype = torch.float32) → Tensor[source]¶
Read a byte stream as a PyTorch tensor
Parameters:
- img_content – bytes of a decoded image
- dtype – the desired data type of the output tensor. If it is float-related, values will be divided by 255.
Returns:
decoded image as a tensor
doctr.io.read_html(url: str, **kwargs: Any) → bytes[source]¶
Read a PDF file and convert it into an image in numpy format
from doctr.io import read_html doc = read_html("https://www.yoursite.com")
Parameters:
- url – URL of the target web page
- **kwargs – keyword arguments from weasyprint.HTML
Returns:
decoded PDF file as a bytes stream
class doctr.io.DocumentFile[source]¶
Read a document from multiple extensions
classmethod from_pdf(file: str | Path | bytes, **kwargs) → list[ndarray][source]¶
Read a PDF file
from doctr.io import DocumentFile doc = DocumentFile.from_pdf("path/to/your/doc.pdf")
Parameters:
- file – the path to the PDF file or a binary stream
- **kwargs – additional parameters to
pypdfium2.PdfPage.render()
Returns:
the list of pages decoded as numpy ndarray of shape H x W x 3
classmethod from_url(url: str, **kwargs) → list[ndarray][source]¶
Interpret a web page as a PDF document
from doctr.io import DocumentFile doc = DocumentFile.from_url("https://www.yoursite.com")
Parameters:
- url – the URL of the target web page
- **kwargs – additional parameters to
pypdfium2.PdfPage.render()
Returns:
the list of pages decoded as numpy ndarray of shape H x W x 3
classmethod from_images(files: Sequence[str | Path | bytes] | str | Path | bytes, **kwargs) → list[ndarray][source]¶
Read an image file (or a collection of image files) and convert it into an image in numpy format
from doctr.io import DocumentFile pages = DocumentFile.from_images(["path/to/your/page1.png", "path/to/your/page2.png"])
Parameters:
- files – the path to the image file or a binary stream, or a collection of those
- **kwargs – additional parameters to
doctr.io.image.read_img_as_numpy()
Returns:
the list of pages decoded as numpy ndarray of shape H x W x 3