Yizhen Zheng | Monash University (original) (raw)

Papers by Yizhen Zheng

Research paper thumbnail of A Survey on Fairness-Aware Recommender Systems

As information filtering services, recommender systems have extremely enriched our daily life by ... more As information filtering services, recommender systems have extremely enriched our daily life by providing personalized suggestions and facilitating people in decision-making, which makes them vital and indispensable to human society in the information era. However, as people become more dependent on them, recent studies show that recommender systems potentially own unintentional impacts on society and individuals because of their unfairness (e.g., gender discrimination in job recommendations). To develop trustworthy services, it is crucial to devise fairness-aware recommender systems that can mitigate these bias issues. In this survey, we summarise existing methodologies and practices of fairness in recommender systems. Firstly, we present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems. Next, after introducing datasets and evaluation metrics applied to assess the fairness of recommender systems, we will delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications. Subsequently, we highlight the connection between fairness and other principles of trustworthy recommender systems, aiming to consider trustworthiness principles holistically while advocating for fairness. Finally, we summarize this review, spotlighting promising opportunities in comprehending concepts, frameworks, the balance between accuracy and fairness, and the ties with trustworthiness, with the ultimate goal of fostering the development of fairness-aware recommender systems.

Research paper thumbnail of Dual Intent Enhanced Graph Neural Network for Session-based New Item Recommendation

arXiv (Cornell University), May 9, 2023

Recommender systems are essential to various fields, e.g., e-commerce, e-learning, and streaming ... more Recommender systems are essential to various fields, e.g., e-commerce, e-learning, and streaming media. At present, graph neural networks (GNNs) for session-based recommendations normally can only recommend items existing in users' historical sessions. As a result, these GNNs have difficulty recommending items that users have never interacted with (new items), which leads to a phenomenon of information cocoon. Therefore, it is necessary to recommend new items to users. As there is no interaction between new items and users, we cannot include new items when building session graphs for GNN session-based recommender systems. Thus, it is challenging to recommend new items for users when using GNN-based methods. We regard this challenge as "GNN Session-based New Item Recommendation (GSNIR)". To solve this problem, we propose a dual-intent enhanced graph neural network for it. Due to the fact that new items are not tied to historical sessions, the users' intent is difficult to predict. We design a dual-intent network to learn user intent from an attention mechanism and the distribution of historical data respectively, which can simulate users' decision-making process in interacting with a new item. To solve the challenge that new items cannot be learned by GNNs, inspired by zero-shot learning (ZSL), we infer the new item representation in GNN space by using their attributes. By outputting new item probabilities, which contain recommendation scores of the corresponding items, the new items with higher scores are recommended to users. Experiments on two representative real-world datasets show the superiority of our proposed method. The case study from the real-world verifies interpretability benefits brought by the dual-intent module and the new item reasoning module.

Research paper thumbnail of A Survey on Fairness-Aware Recommender Systems

As information filtering services, recommender systems have extremely enriched our daily life by ... more As information filtering services, recommender systems have extremely enriched our daily life by providing personalized suggestions and facilitating people in decision-making, which makes them vital and indispensable to human society in the information era. However, as people become more dependent on them, recent studies show that recommender systems potentially own unintentional impacts on society and individuals because of their unfairness (e.g., gender discrimination in job recommendations). To develop trustworthy services, it is crucial to devise fairness-aware recommender systems that can mitigate these bias issues. In this survey, we summarise existing methodologies and practices of fairness in recommender systems. Firstly, we present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems. Next, after introducing datasets and evaluation metrics applied to assess the fairness of recommender systems, we will delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications. Subsequently, we highlight the connection between fairness and other principles of trustworthy recommender systems, aiming to consider trustworthiness principles holistically while advocating for fairness. Finally, we summarize this review, spotlighting promising opportunities in comprehending concepts, frameworks, the balance between accuracy and fairness, and the ties with trustworthiness, with the ultimate goal of fostering the development of fairness-aware recommender systems.

Research paper thumbnail of Finding the Missing-half: Graph Complementary Learning for Homophily-prone and Heterophily-prone Graphs

arXiv (Cornell University), Jun 13, 2023

Real-world graphs generally have only one kind of tendency in their connections. These connection... more Real-world graphs generally have only one kind of tendency in their connections. These connections are either homophily-prone or heterophilyprone. While graphs with homophily-prone edges tend to connect nodes with the same class (i.e., intra-class nodes), heterophily-prone edges tend to build relationships between nodes with different classes (i.e., inter-class nodes). Existing GNNs only take the original graph during training. The problem with this approach is that it forgets to take into consideration the "missing-half" structural information, that is, heterophily-prone topology for homophily-prone graphs and homophilyprone topology for heterophily-prone graphs. In our paper, we introduce Graph cOmplementAry Learning, namely GOAL, which consists of two components: graph complementation and complemented graph convolution. The first component finds the missing-half structural information for a given graph to complement it. The complemented graph has two sets of graphs including both homophily-and heterophily-prone topology. In the latter component, to handle complemented graphs, we design a new graph convolution from the perspective of optimisation. The experiment results show that GOAL consistently outperforms all baselines in eight real-world datasets.

Research paper thumbnail of Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating

Proceedings of the AAAI Conference on Artificial Intelligence

Unsupervised graph representation learning (UGRL) has drawn increasing research attention and ach... more Unsupervised graph representation learning (UGRL) has drawn increasing research attention and achieved promising results in several graph analytic tasks. Relying on the homophily assumption, existing UGRL methods tend to smooth the learned node representations along all edges, ignoring the existence of heterophilic edges that connect nodes with distinct attributes. As a result, current methods are hard to generalize to heterophilic graphs where dissimilar nodes are widely connected, and also vulnerable to adversarial attacks. To address this issue, we propose a novel unsupervised Graph Representation learning method with Edge hEterophily discriminaTing (GREET) which learns representations by discriminating and leveraging homophilic edges and heterophilic edges. To distinguish two types of edges, we build an edge discriminator that infers edge homophily/heterophily from feature and structure information. We train the edge discriminator in an unsupervised way through minimizing the cr...

Research paper thumbnail of Dual Intent Enhanced Graph Neural Network for Session-based New Item Recommendation

Proceedings of the ACM Web Conference 2023

Research paper thumbnail of Contrastive Graph Similarity Networks

ACM Transactions on the Web

Graph similarity learning is a significant and fundamental issue in the theory and analysis of gr... more Graph similarity learning is a significant and fundamental issue in the theory and analysis of graphs, which has been applied in a variety of fields, including object tracking, recommender systems, similarity search, etc. Recent methods for graph similarity learning that utilize deep learning typically share two deficiencies: (1) they leverage graph neural networks as backbones for learning graph representations but have not well captured the complex information inside data, and (2) they employ a cross-graph attention mechanism for graph similarity learning, which is computationally expensive. Taking these limitations into consideration, a method for graph similarity learning is devised in this study, namely,ContrastiveGraphSimilarity Network (CGSim). To enhance graph similarity learning, CGSim makes use of the complementary information of two input graphs and captures pairwise relations in a contrastive learning framework. By developing a dual contrastive learning module with anode...

Research paper thumbnail of Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination

arXiv (Cornell University), Jun 3, 2022

Research paper thumbnail of CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning

arXiv (Cornell University), May 30, 2022

Graph similarity learning refers to calculating the similarity score between two graphs, which is... more Graph similarity learning refers to calculating the similarity score between two graphs, which is required in many realistic applications, such as visual tracking, graph classification, and collaborative filtering. As most of the existing graph neural networks yield effective graph representations of a single graph, little effort has been made for jointly learning two graph representations and calculating their similarity score. In addition, existing unsupervised graph similarity learning methods are mainly clustering-based, which ignores the valuable information embodied in graph pairs. To this end, we propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning in order to calculate the similarity between any two input graph objects. Specifically, we generate two augmented views for each graph in a pair respectively. Then, we employ two strategies, namely cross-view interaction and crossgraph interaction, for effective node representation learning. The former is resorted to strengthen the consistency of node representations in two views. The latter is utilized to identify node differences between different graphs. Finally, we transform node representations into graph-level representations via pooling operations for graph similarity computation. We have evaluated CGMN on eight real-world datasets, and the experiment results show that the proposed new approach is superior to the state-ofthe-art methods in graph similarity learning downstream tasks.

Research paper thumbnail of Unifying Graph Contrastive Learning with Flexible Contextual Scopes

2022 IEEE International Conference on Data Mining (ICDM)

Graph contrastive learning (GCL) has recently emerged as an effective learning paradigm to allevi... more Graph contrastive learning (GCL) has recently emerged as an effective learning paradigm to alleviate the reliance on labelling information for graph representation learning. The core of GCL is to maximise the mutual information between the representation of a node and its contextual representation (i.e., the corresponding instance with similar semantic information) summarised from the contextual scope (e.g., the whole graph or 1hop neighbourhood). This scheme distils valuable self-supervision signals for GCL training. However, existing GCL methods still suffer from limitations, such as the incapacity or inconvenience in choosing a suitable contextual scope for different datasets and building biased contrastiveness. To address aforementioned problems, we present a simple self-supervised learning method termed Unifying Graph Contrastive Learning with Flexible Contextual Scopes (UGCL for short). Our algorithm builds flexible contextual representations with tunable contextual scopes by controlling the power of an adjacency matrix. Additionally, our method ensures contrastiveness is built within connected components to reduce the bias of contextual representations. Based on representations from both local and contextual scopes, UGCL optimises a very simple contrastive loss function for graph representation learning. Essentially, the architecture of UGCL can be considered as a general framework to unify existing GCL methods. We have conducted intensive experiments and achieved new state-of-theart performance in six out of eight benchmark datasets compared with self-supervised graph representation learning baselines. Our code has been open sourced 1 .

Research paper thumbnail of Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating

Cornell University - arXiv, Nov 25, 2022

Unsupervised graph representation learning (UGRL) has drawn increasing research attention and ach... more Unsupervised graph representation learning (UGRL) has drawn increasing research attention and achieved promising results in several graph analytic tasks. Relying on the homophily assumption, existing UGRL methods tend to smooth the learned node representations along all edges, ignoring the existence of heterophilic edges that connect nodes with distinct attributes. As a result, current methods are hard to generalize to heterophilic graphs where dissimilar nodes are widely connected, and also vulnerable to adversarial attacks. To address this issue, we propose a novel unsupervised Graph Representation learning method with Edge hEterophily discriminaTing (GREET) which learns representations by discriminating and leveraging homophilic edges and heterophilic edges. To distinguish two types of edges, we build an edge discriminator that infers edge homophily/heterophily from feature and structure information. We train the edge discriminator in an unsupervised way through minimizing the crafted pivot-anchored ranking loss, with randomly sampled node pairs acting as pivots. Node representations are learned through contrasting the dual-channel encodings obtained from the discriminated homophilic and heterophilic edges. With an effective interplaying scheme, edge discriminating and representation learning can mutually boost each other during the training phase. We conducted extensive experiments on 14 benchmark datasets and multiple learning scenarios to demonstrate the superiority of GREET.

Research paper thumbnail of Toward Graph Self-Supervised Learning With Contrastive Adjusted Zooming

IEEE Transactions on Neural Networks and Learning Systems

Graph representation learning (GRL) is critical for graph-structured data analysis. However, most... more Graph representation learning (GRL) is critical for graph-structured data analysis. However, most of the existing graph neural networks (GNNs) heavily rely on labeling information, which is normally expensive to obtain in the real world. Although some existing works aim to effectively learn graph representations in an unsupervised manner, they suffer from certain limitations, such as the heavy reliance on monotone contrastiveness and limited scalability. To overcome the aforementioned problems, in light of the recent advancements in graph contrastive learning, we introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming, namely G-Zoom, to learn node representations by leveraging the proposed adjusted zooming scheme. Specifically, this mechanism enables G-Zoom to explore and extract selfsupervision signals from a graph from multiple scales: micro (i.e., node-level), meso (i.e., neighborhood-level), and macro (i.e., subgraph-level). Firstly, we generate two augmented views of the input graph via two different graph augmentations. Then, we establish three different contrastiveness on the above three scales progressively, from node, neighboring, to subgraph level, where we maximize the agreement between graph representations across scales. While we can extract valuable clues from a given graph on the micro and macro perspectives, the neighboring-level contrastiveness offers G-Zoom the capability of a customizable option based on our adjusted zooming scheme to manually choose an optimal viewpoint that lies between the micro and macro perspectives to better understand the graph data. Additionally, to make our model scalable to large graphs, we employ a parallel graph diffusion approach to decouple model training from the graph size. We have conducted extensive experiments on realworld datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.

Research paper thumbnail of Unifying Graph Contrastive Learning with Flexible Contextual Scopes

arXiv (Cornell University), Oct 17, 2022

Research paper thumbnail of Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming

ArXiv, 2021

Graph representation learning (GRL) is critical for graph-structured data analysis. However, most... more Graph representation learning (GRL) is critical for graph-structured data analysis. However, most of the existing graph neural networks (GNNs) heavily rely on labeling information, which is normally expensive to obtain in the real world. Although some existing works aim to effectively learn graph representation in an unsupervised manner, they suffer from certain limitations, such as the heavy reliance on monotone contrastiveness and limited scalability. To overcome the aforementioned problems, in light of the recent advancements in graph contrastive learning, we introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming, namely G-Zoom, to learn node representations by leveraging the proposed adjusted zooming scheme. Specifically, this mechanism enables G-Zoom to explore and extract selfsupervision signals from a graph from multiple scales: micro (i.e., node-level), meso (i.e., neighbourhood-level), and macro (i.e., subgraph-level...

Research paper thumbnail of Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning

Graph representation learning plays a vital role in processing graph-structured data. However, pr... more Graph representation learning plays a vital role in processing graph-structured data. However, prior arts on graph representation learning heavily rely on the labeling information. To overcome this problem, inspired by the recent success of graph contrastive learning and Siamese networks in visual representation learning, we propose a novel selfsupervised approach in this paper to learn node representations by enhancing Siamese self-distillation with multi-scale contrastive learning. Specifically, we first generate two augmented views from the input graph based on local and global perspectives. Then, we employ two objectives called crossview and cross-network contrastiveness to maximize the agreement between node representations across different views and networks. To demonstrate the effectiveness of our approach, we perform empirical experiments on five real-world datasets. Our method not only achieves new state-of-theart results but also surpasses some semi-supervised counterparts...

Research paper thumbnail of Heterogeneous Graph Attention Network for Small and Medium-Sized Enterprises Bankruptcy Prediction

Advances in Knowledge Discovery and Data Mining

Credit assessment for Small and Medium-sized Enterprises (SMEs) is of great interest to financial... more Credit assessment for Small and Medium-sized Enterprises (SMEs) is of great interest to financial institutions such as commercial banks and Peer-to-Peer lending platforms. Effective credit rating modeling can help them make loan-granted decisions while limiting their risk exposure. Despite a substantial amount of research being conducted in this domain, there are three existing issues. Firstly, many of them are mainly developed based on financial statements, which usually are not publicly-accessible for SMEs. Secondly, they always neglect the rich relational information embodied in financial networks. Finally, existing graphneural-network-based (GNN) approaches for credit assessment are only applicable to homogeneous networks. To address these issues, we propose a heterogeneous-attention-network-based model (HAT) to facilitate SMEs bankruptcy prediction using publicly-accessible data. Specifically, our model has two major components: a heterogeneous neighborhood encoding layer and a triple attention output layer. While the first layer can encapsulate target nodes' heterogeneous neighborhood information to address the graph heterogeneity, the latter can generate the prediction by considering the importance of different metapath-based neighbors, metapaths, and networks. Extensive experiments in a real-world dataset demonstrate the effectiveness of our model compared with baselines.

Research paper thumbnail of A Survey on Fairness-Aware Recommender Systems

As information filtering services, recommender systems have extremely enriched our daily life by ... more As information filtering services, recommender systems have extremely enriched our daily life by providing personalized suggestions and facilitating people in decision-making, which makes them vital and indispensable to human society in the information era. However, as people become more dependent on them, recent studies show that recommender systems potentially own unintentional impacts on society and individuals because of their unfairness (e.g., gender discrimination in job recommendations). To develop trustworthy services, it is crucial to devise fairness-aware recommender systems that can mitigate these bias issues. In this survey, we summarise existing methodologies and practices of fairness in recommender systems. Firstly, we present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems. Next, after introducing datasets and evaluation metrics applied to assess the fairness of recommender systems, we will delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications. Subsequently, we highlight the connection between fairness and other principles of trustworthy recommender systems, aiming to consider trustworthiness principles holistically while advocating for fairness. Finally, we summarize this review, spotlighting promising opportunities in comprehending concepts, frameworks, the balance between accuracy and fairness, and the ties with trustworthiness, with the ultimate goal of fostering the development of fairness-aware recommender systems.

Research paper thumbnail of Dual Intent Enhanced Graph Neural Network for Session-based New Item Recommendation

arXiv (Cornell University), May 9, 2023

Recommender systems are essential to various fields, e.g., e-commerce, e-learning, and streaming ... more Recommender systems are essential to various fields, e.g., e-commerce, e-learning, and streaming media. At present, graph neural networks (GNNs) for session-based recommendations normally can only recommend items existing in users' historical sessions. As a result, these GNNs have difficulty recommending items that users have never interacted with (new items), which leads to a phenomenon of information cocoon. Therefore, it is necessary to recommend new items to users. As there is no interaction between new items and users, we cannot include new items when building session graphs for GNN session-based recommender systems. Thus, it is challenging to recommend new items for users when using GNN-based methods. We regard this challenge as "GNN Session-based New Item Recommendation (GSNIR)". To solve this problem, we propose a dual-intent enhanced graph neural network for it. Due to the fact that new items are not tied to historical sessions, the users' intent is difficult to predict. We design a dual-intent network to learn user intent from an attention mechanism and the distribution of historical data respectively, which can simulate users' decision-making process in interacting with a new item. To solve the challenge that new items cannot be learned by GNNs, inspired by zero-shot learning (ZSL), we infer the new item representation in GNN space by using their attributes. By outputting new item probabilities, which contain recommendation scores of the corresponding items, the new items with higher scores are recommended to users. Experiments on two representative real-world datasets show the superiority of our proposed method. The case study from the real-world verifies interpretability benefits brought by the dual-intent module and the new item reasoning module.

Research paper thumbnail of A Survey on Fairness-Aware Recommender Systems

As information filtering services, recommender systems have extremely enriched our daily life by ... more As information filtering services, recommender systems have extremely enriched our daily life by providing personalized suggestions and facilitating people in decision-making, which makes them vital and indispensable to human society in the information era. However, as people become more dependent on them, recent studies show that recommender systems potentially own unintentional impacts on society and individuals because of their unfairness (e.g., gender discrimination in job recommendations). To develop trustworthy services, it is crucial to devise fairness-aware recommender systems that can mitigate these bias issues. In this survey, we summarise existing methodologies and practices of fairness in recommender systems. Firstly, we present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems. Next, after introducing datasets and evaluation metrics applied to assess the fairness of recommender systems, we will delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications. Subsequently, we highlight the connection between fairness and other principles of trustworthy recommender systems, aiming to consider trustworthiness principles holistically while advocating for fairness. Finally, we summarize this review, spotlighting promising opportunities in comprehending concepts, frameworks, the balance between accuracy and fairness, and the ties with trustworthiness, with the ultimate goal of fostering the development of fairness-aware recommender systems.

Research paper thumbnail of Finding the Missing-half: Graph Complementary Learning for Homophily-prone and Heterophily-prone Graphs

arXiv (Cornell University), Jun 13, 2023

Real-world graphs generally have only one kind of tendency in their connections. These connection... more Real-world graphs generally have only one kind of tendency in their connections. These connections are either homophily-prone or heterophilyprone. While graphs with homophily-prone edges tend to connect nodes with the same class (i.e., intra-class nodes), heterophily-prone edges tend to build relationships between nodes with different classes (i.e., inter-class nodes). Existing GNNs only take the original graph during training. The problem with this approach is that it forgets to take into consideration the "missing-half" structural information, that is, heterophily-prone topology for homophily-prone graphs and homophilyprone topology for heterophily-prone graphs. In our paper, we introduce Graph cOmplementAry Learning, namely GOAL, which consists of two components: graph complementation and complemented graph convolution. The first component finds the missing-half structural information for a given graph to complement it. The complemented graph has two sets of graphs including both homophily-and heterophily-prone topology. In the latter component, to handle complemented graphs, we design a new graph convolution from the perspective of optimisation. The experiment results show that GOAL consistently outperforms all baselines in eight real-world datasets.

Research paper thumbnail of Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating

Proceedings of the AAAI Conference on Artificial Intelligence

Unsupervised graph representation learning (UGRL) has drawn increasing research attention and ach... more Unsupervised graph representation learning (UGRL) has drawn increasing research attention and achieved promising results in several graph analytic tasks. Relying on the homophily assumption, existing UGRL methods tend to smooth the learned node representations along all edges, ignoring the existence of heterophilic edges that connect nodes with distinct attributes. As a result, current methods are hard to generalize to heterophilic graphs where dissimilar nodes are widely connected, and also vulnerable to adversarial attacks. To address this issue, we propose a novel unsupervised Graph Representation learning method with Edge hEterophily discriminaTing (GREET) which learns representations by discriminating and leveraging homophilic edges and heterophilic edges. To distinguish two types of edges, we build an edge discriminator that infers edge homophily/heterophily from feature and structure information. We train the edge discriminator in an unsupervised way through minimizing the cr...

Research paper thumbnail of Dual Intent Enhanced Graph Neural Network for Session-based New Item Recommendation

Proceedings of the ACM Web Conference 2023

Research paper thumbnail of Contrastive Graph Similarity Networks

ACM Transactions on the Web

Graph similarity learning is a significant and fundamental issue in the theory and analysis of gr... more Graph similarity learning is a significant and fundamental issue in the theory and analysis of graphs, which has been applied in a variety of fields, including object tracking, recommender systems, similarity search, etc. Recent methods for graph similarity learning that utilize deep learning typically share two deficiencies: (1) they leverage graph neural networks as backbones for learning graph representations but have not well captured the complex information inside data, and (2) they employ a cross-graph attention mechanism for graph similarity learning, which is computationally expensive. Taking these limitations into consideration, a method for graph similarity learning is devised in this study, namely,ContrastiveGraphSimilarity Network (CGSim). To enhance graph similarity learning, CGSim makes use of the complementary information of two input graphs and captures pairwise relations in a contrastive learning framework. By developing a dual contrastive learning module with anode...

Research paper thumbnail of Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination

arXiv (Cornell University), Jun 3, 2022

Research paper thumbnail of CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning

arXiv (Cornell University), May 30, 2022

Graph similarity learning refers to calculating the similarity score between two graphs, which is... more Graph similarity learning refers to calculating the similarity score between two graphs, which is required in many realistic applications, such as visual tracking, graph classification, and collaborative filtering. As most of the existing graph neural networks yield effective graph representations of a single graph, little effort has been made for jointly learning two graph representations and calculating their similarity score. In addition, existing unsupervised graph similarity learning methods are mainly clustering-based, which ignores the valuable information embodied in graph pairs. To this end, we propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning in order to calculate the similarity between any two input graph objects. Specifically, we generate two augmented views for each graph in a pair respectively. Then, we employ two strategies, namely cross-view interaction and crossgraph interaction, for effective node representation learning. The former is resorted to strengthen the consistency of node representations in two views. The latter is utilized to identify node differences between different graphs. Finally, we transform node representations into graph-level representations via pooling operations for graph similarity computation. We have evaluated CGMN on eight real-world datasets, and the experiment results show that the proposed new approach is superior to the state-ofthe-art methods in graph similarity learning downstream tasks.

Research paper thumbnail of Unifying Graph Contrastive Learning with Flexible Contextual Scopes

2022 IEEE International Conference on Data Mining (ICDM)

Graph contrastive learning (GCL) has recently emerged as an effective learning paradigm to allevi... more Graph contrastive learning (GCL) has recently emerged as an effective learning paradigm to alleviate the reliance on labelling information for graph representation learning. The core of GCL is to maximise the mutual information between the representation of a node and its contextual representation (i.e., the corresponding instance with similar semantic information) summarised from the contextual scope (e.g., the whole graph or 1hop neighbourhood). This scheme distils valuable self-supervision signals for GCL training. However, existing GCL methods still suffer from limitations, such as the incapacity or inconvenience in choosing a suitable contextual scope for different datasets and building biased contrastiveness. To address aforementioned problems, we present a simple self-supervised learning method termed Unifying Graph Contrastive Learning with Flexible Contextual Scopes (UGCL for short). Our algorithm builds flexible contextual representations with tunable contextual scopes by controlling the power of an adjacency matrix. Additionally, our method ensures contrastiveness is built within connected components to reduce the bias of contextual representations. Based on representations from both local and contextual scopes, UGCL optimises a very simple contrastive loss function for graph representation learning. Essentially, the architecture of UGCL can be considered as a general framework to unify existing GCL methods. We have conducted intensive experiments and achieved new state-of-theart performance in six out of eight benchmark datasets compared with self-supervised graph representation learning baselines. Our code has been open sourced 1 .

Research paper thumbnail of Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating

Cornell University - arXiv, Nov 25, 2022

Unsupervised graph representation learning (UGRL) has drawn increasing research attention and ach... more Unsupervised graph representation learning (UGRL) has drawn increasing research attention and achieved promising results in several graph analytic tasks. Relying on the homophily assumption, existing UGRL methods tend to smooth the learned node representations along all edges, ignoring the existence of heterophilic edges that connect nodes with distinct attributes. As a result, current methods are hard to generalize to heterophilic graphs where dissimilar nodes are widely connected, and also vulnerable to adversarial attacks. To address this issue, we propose a novel unsupervised Graph Representation learning method with Edge hEterophily discriminaTing (GREET) which learns representations by discriminating and leveraging homophilic edges and heterophilic edges. To distinguish two types of edges, we build an edge discriminator that infers edge homophily/heterophily from feature and structure information. We train the edge discriminator in an unsupervised way through minimizing the crafted pivot-anchored ranking loss, with randomly sampled node pairs acting as pivots. Node representations are learned through contrasting the dual-channel encodings obtained from the discriminated homophilic and heterophilic edges. With an effective interplaying scheme, edge discriminating and representation learning can mutually boost each other during the training phase. We conducted extensive experiments on 14 benchmark datasets and multiple learning scenarios to demonstrate the superiority of GREET.

Research paper thumbnail of Toward Graph Self-Supervised Learning With Contrastive Adjusted Zooming

IEEE Transactions on Neural Networks and Learning Systems

Graph representation learning (GRL) is critical for graph-structured data analysis. However, most... more Graph representation learning (GRL) is critical for graph-structured data analysis. However, most of the existing graph neural networks (GNNs) heavily rely on labeling information, which is normally expensive to obtain in the real world. Although some existing works aim to effectively learn graph representations in an unsupervised manner, they suffer from certain limitations, such as the heavy reliance on monotone contrastiveness and limited scalability. To overcome the aforementioned problems, in light of the recent advancements in graph contrastive learning, we introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming, namely G-Zoom, to learn node representations by leveraging the proposed adjusted zooming scheme. Specifically, this mechanism enables G-Zoom to explore and extract selfsupervision signals from a graph from multiple scales: micro (i.e., node-level), meso (i.e., neighborhood-level), and macro (i.e., subgraph-level). Firstly, we generate two augmented views of the input graph via two different graph augmentations. Then, we establish three different contrastiveness on the above three scales progressively, from node, neighboring, to subgraph level, where we maximize the agreement between graph representations across scales. While we can extract valuable clues from a given graph on the micro and macro perspectives, the neighboring-level contrastiveness offers G-Zoom the capability of a customizable option based on our adjusted zooming scheme to manually choose an optimal viewpoint that lies between the micro and macro perspectives to better understand the graph data. Additionally, to make our model scalable to large graphs, we employ a parallel graph diffusion approach to decouple model training from the graph size. We have conducted extensive experiments on realworld datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.

Research paper thumbnail of Unifying Graph Contrastive Learning with Flexible Contextual Scopes

arXiv (Cornell University), Oct 17, 2022

Research paper thumbnail of Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming

ArXiv, 2021

Graph representation learning (GRL) is critical for graph-structured data analysis. However, most... more Graph representation learning (GRL) is critical for graph-structured data analysis. However, most of the existing graph neural networks (GNNs) heavily rely on labeling information, which is normally expensive to obtain in the real world. Although some existing works aim to effectively learn graph representation in an unsupervised manner, they suffer from certain limitations, such as the heavy reliance on monotone contrastiveness and limited scalability. To overcome the aforementioned problems, in light of the recent advancements in graph contrastive learning, we introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming, namely G-Zoom, to learn node representations by leveraging the proposed adjusted zooming scheme. Specifically, this mechanism enables G-Zoom to explore and extract selfsupervision signals from a graph from multiple scales: micro (i.e., node-level), meso (i.e., neighbourhood-level), and macro (i.e., subgraph-level...

Research paper thumbnail of Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning

Graph representation learning plays a vital role in processing graph-structured data. However, pr... more Graph representation learning plays a vital role in processing graph-structured data. However, prior arts on graph representation learning heavily rely on the labeling information. To overcome this problem, inspired by the recent success of graph contrastive learning and Siamese networks in visual representation learning, we propose a novel selfsupervised approach in this paper to learn node representations by enhancing Siamese self-distillation with multi-scale contrastive learning. Specifically, we first generate two augmented views from the input graph based on local and global perspectives. Then, we employ two objectives called crossview and cross-network contrastiveness to maximize the agreement between node representations across different views and networks. To demonstrate the effectiveness of our approach, we perform empirical experiments on five real-world datasets. Our method not only achieves new state-of-theart results but also surpasses some semi-supervised counterparts...

Research paper thumbnail of Heterogeneous Graph Attention Network for Small and Medium-Sized Enterprises Bankruptcy Prediction

Advances in Knowledge Discovery and Data Mining

Credit assessment for Small and Medium-sized Enterprises (SMEs) is of great interest to financial... more Credit assessment for Small and Medium-sized Enterprises (SMEs) is of great interest to financial institutions such as commercial banks and Peer-to-Peer lending platforms. Effective credit rating modeling can help them make loan-granted decisions while limiting their risk exposure. Despite a substantial amount of research being conducted in this domain, there are three existing issues. Firstly, many of them are mainly developed based on financial statements, which usually are not publicly-accessible for SMEs. Secondly, they always neglect the rich relational information embodied in financial networks. Finally, existing graphneural-network-based (GNN) approaches for credit assessment are only applicable to homogeneous networks. To address these issues, we propose a heterogeneous-attention-network-based model (HAT) to facilitate SMEs bankruptcy prediction using publicly-accessible data. Specifically, our model has two major components: a heterogeneous neighborhood encoding layer and a triple attention output layer. While the first layer can encapsulate target nodes' heterogeneous neighborhood information to address the graph heterogeneity, the latter can generate the prediction by considering the importance of different metapath-based neighbors, metapaths, and networks. Extensive experiments in a real-world dataset demonstrate the effectiveness of our model compared with baselines.