Antonela Monachesi | Max Planck Institute for Astrophysics (original) (raw)
Uploads
Papers by Antonela Monachesi
Monthly Notices of the Royal Astronomical Society: Letters, 2016
The Astrophysical Journal, 2013
Proceedings of the International Astronomical Union, 2015
Stat Neerl, Nov 16, 2011
We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) ... more We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) to determine the star formation history (SFH) of M32 from its resolved stellar population. We find that 2-5Gyr old stars contribute \som40%+/- 17% of M32's mass, while 55%+/-21% of M32's mass comes from stars older than 5 Gyr. The mass-weighted mean age and metallicity of M32 at F1 are =6.8+/-1.5 Gyr and <[M/H]>=-0.01+/-0.08 dex. The SFH additionally indicates the presence of young (<2 Gyr old), metal-poor ([M/H]\sim-0.7) stars, suggesting that blue straggler stars contribute ~2% of the mass at F1; the remaining \sim3% of the mass is in young metal-rich stars. Line-strength indices computed from the SFH imply a light-weighted mean age and metallicity of 4.9 Gyr and [M/H] = -0.12 dex, and single-stellar-population-equivalent parameters of 2.9+/-0.2 Gyr and [M/H]=0.02+/-0.01 dex at F1 (~2.7 re). This contradicts spectroscopic studies that show a steep age gradient from M32's center to 1re. The inferred SFH of the M31 background field F2 reveals that the majority of its stars are old, with \sim95% of its mass already acquired 5-14 Gyr ago. It is composed of two dominant populations; \sim30%+/-7.5% of its mass is in a 5-8 Gyr old population, and \sim65%+/-9% of the mass is in a 8-14 Gyr old population. The mass-weighted mean age and metallicity of F2 are =9.2+/-1.2 Gyr and <[M/H]>=-0.10+/-0.10 dex, respectively. Our results suggest that the inner disk and spheroid populations of M31 are indistinguishable from those of the outer disk and spheroid. Assuming the mean age of M31's disk at F2 (\sim1 disk scale length) to be 5-9 Gyr, our results agree with an inside-out disk formation scenario for M31's disk.
The Astrophysical Journal, 2010
We observed two fields near M32 with the Advanced Camera for Surveys/High Resolution Channel (ACS... more We observed two fields near M32 with the Advanced Camera for Surveys/High Resolution Channel (ACS/HRC) on board the Hubble Space Telescope. The main field, F1, is 1farcm8 from the center of M32; the second field, F2, constrains the M31 background, and is 5farcm4 distant. Each field was observed for 16 orbits in each of the F435W (narrow B) and F555W (narrow V) filters. The duration of the observations allowed RR Lyrae stars to be detected. A population of RR Lyrae stars determined to belong to M32 would prove the existence of an ancient population in that galaxy, a subject of some debate. We detected 17 RR Lyrae variables in F1 and 14 in F2. A 1σ upper limit of 6 RR Lyrae variables belonging to M32 is inferred from these two fields alone. Use of our two ACS/WFC parallel fields provides better constraints on the M31 background, however, and implies that 7+4 -3 (68% confidence interval) RR Lyrae variables in F1 belong to M32. We have therefore found evidence for an ancient population in M32. It seems to be nearly indistinguishable from the ancient population of M31. The RR Lyrae stars in the F1 and F2 fields have indistinguishable mean V-band magnitudes, mean periods, distributions in the Bailey diagram, and ratios of RRc to RRtotal types. However, the color distributions in the two fields are different, with a population of red RRab variables in F1 not seen in F2. We suggest that these might be identified with the detected M32 RR Lyrae population, but the small number of stars rules out a definitive claim. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with GO proposal 10572.
We have identified a major global enhancement of star formation in the inner M31 disk that occurr... more We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2-4 Gyr ago, producing sim\simsim60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color-magnitude diagrams of low extinction regions in the main disk of M31 (3$<$R$<$20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33 and/or a merger.
Monthly Notices of the Royal Astronomical Society, 2016
The Astronomical Journal, 2015
The Astrophysical Journal, 2015
The Astrophysical Journal, 2015
The Astrophysical Journal, 2015
ABSTRACT We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within t... more ABSTRACT We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the MAgellanic Stellar History (SMASH) conducted with the Dark Energy Camera on the Blanco 4m Telescope. The new satellite is compact (r_h = 68 +/- 11 pc) and faint (M_V = -4.8 +/- 0.3), but well within the realm of dwarf galaxies. The stellar distribution of HydraII in the color-magnitude diagram is well-described by a metal-poor ([Fe/H] = -2.2) and old (13 Gyr) isochrone and shows a distinct blue horizontal branch, some possible red clump stars, and faint stars that are suggestive of blue stragglers. At a heliocentric distance of 134 +/- 10 kpc, Hydra II is located in a region of the Galactic halo that models have suggested may host material from the leading arm of the Magellanic Stream. A comparison with N-body simulations hints that the new dwarf galaxy could be or could have been a satellite of the Magellanic Clouds.
We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical gala... more We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical galaxy M32. We have obtained F435W and F555W photometry based on HST ACS/HRC images for a region 110" from the center of M32 and a background field about 320" away from M32 center. Due to the high resolution of our Nyquist-sampled images, the small photometric errors,
Proceedings of the International Astronomical Union, 2009
Proceedings of the International Astronomical Union, 2009
The Astrophysical Journal Supplement Series, 2014
The Astrophysical Journal, 2012
The Astrophysical Journal, 2011
The Astrophysical Journal, 2014
The Astrophysical Journal, 2014
Monthly Notices of the Royal Astronomical Society: Letters, 2016
The Astrophysical Journal, 2013
Proceedings of the International Astronomical Union, 2015
Stat Neerl, Nov 16, 2011
We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) ... more We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) to determine the star formation history (SFH) of M32 from its resolved stellar population. We find that 2-5Gyr old stars contribute \som40%+/- 17% of M32's mass, while 55%+/-21% of M32's mass comes from stars older than 5 Gyr. The mass-weighted mean age and metallicity of M32 at F1 are =6.8+/-1.5 Gyr and <[M/H]>=-0.01+/-0.08 dex. The SFH additionally indicates the presence of young (<2 Gyr old), metal-poor ([M/H]\sim-0.7) stars, suggesting that blue straggler stars contribute ~2% of the mass at F1; the remaining \sim3% of the mass is in young metal-rich stars. Line-strength indices computed from the SFH imply a light-weighted mean age and metallicity of 4.9 Gyr and [M/H] = -0.12 dex, and single-stellar-population-equivalent parameters of 2.9+/-0.2 Gyr and [M/H]=0.02+/-0.01 dex at F1 (~2.7 re). This contradicts spectroscopic studies that show a steep age gradient from M32's center to 1re. The inferred SFH of the M31 background field F2 reveals that the majority of its stars are old, with \sim95% of its mass already acquired 5-14 Gyr ago. It is composed of two dominant populations; \sim30%+/-7.5% of its mass is in a 5-8 Gyr old population, and \sim65%+/-9% of the mass is in a 8-14 Gyr old population. The mass-weighted mean age and metallicity of F2 are =9.2+/-1.2 Gyr and <[M/H]>=-0.10+/-0.10 dex, respectively. Our results suggest that the inner disk and spheroid populations of M31 are indistinguishable from those of the outer disk and spheroid. Assuming the mean age of M31's disk at F2 (\sim1 disk scale length) to be 5-9 Gyr, our results agree with an inside-out disk formation scenario for M31's disk.
The Astrophysical Journal, 2010
We observed two fields near M32 with the Advanced Camera for Surveys/High Resolution Channel (ACS... more We observed two fields near M32 with the Advanced Camera for Surveys/High Resolution Channel (ACS/HRC) on board the Hubble Space Telescope. The main field, F1, is 1farcm8 from the center of M32; the second field, F2, constrains the M31 background, and is 5farcm4 distant. Each field was observed for 16 orbits in each of the F435W (narrow B) and F555W (narrow V) filters. The duration of the observations allowed RR Lyrae stars to be detected. A population of RR Lyrae stars determined to belong to M32 would prove the existence of an ancient population in that galaxy, a subject of some debate. We detected 17 RR Lyrae variables in F1 and 14 in F2. A 1σ upper limit of 6 RR Lyrae variables belonging to M32 is inferred from these two fields alone. Use of our two ACS/WFC parallel fields provides better constraints on the M31 background, however, and implies that 7+4 -3 (68% confidence interval) RR Lyrae variables in F1 belong to M32. We have therefore found evidence for an ancient population in M32. It seems to be nearly indistinguishable from the ancient population of M31. The RR Lyrae stars in the F1 and F2 fields have indistinguishable mean V-band magnitudes, mean periods, distributions in the Bailey diagram, and ratios of RRc to RRtotal types. However, the color distributions in the two fields are different, with a population of red RRab variables in F1 not seen in F2. We suggest that these might be identified with the detected M32 RR Lyrae population, but the small number of stars rules out a definitive claim. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with GO proposal 10572.
We have identified a major global enhancement of star formation in the inner M31 disk that occurr... more We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2-4 Gyr ago, producing sim\simsim60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color-magnitude diagrams of low extinction regions in the main disk of M31 (3$<$R$<$20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33 and/or a merger.
Monthly Notices of the Royal Astronomical Society, 2016
The Astronomical Journal, 2015
The Astrophysical Journal, 2015
The Astrophysical Journal, 2015
The Astrophysical Journal, 2015
ABSTRACT We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within t... more ABSTRACT We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the MAgellanic Stellar History (SMASH) conducted with the Dark Energy Camera on the Blanco 4m Telescope. The new satellite is compact (r_h = 68 +/- 11 pc) and faint (M_V = -4.8 +/- 0.3), but well within the realm of dwarf galaxies. The stellar distribution of HydraII in the color-magnitude diagram is well-described by a metal-poor ([Fe/H] = -2.2) and old (13 Gyr) isochrone and shows a distinct blue horizontal branch, some possible red clump stars, and faint stars that are suggestive of blue stragglers. At a heliocentric distance of 134 +/- 10 kpc, Hydra II is located in a region of the Galactic halo that models have suggested may host material from the leading arm of the Magellanic Stream. A comparison with N-body simulations hints that the new dwarf galaxy could be or could have been a satellite of the Magellanic Clouds.
We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical gala... more We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical galaxy M32. We have obtained F435W and F555W photometry based on HST ACS/HRC images for a region 110" from the center of M32 and a background field about 320" away from M32 center. Due to the high resolution of our Nyquist-sampled images, the small photometric errors,
Proceedings of the International Astronomical Union, 2009
Proceedings of the International Astronomical Union, 2009
The Astrophysical Journal Supplement Series, 2014
The Astrophysical Journal, 2012
The Astrophysical Journal, 2011
The Astrophysical Journal, 2014
The Astrophysical Journal, 2014