Bruno Henriques | Max Planck Institute for Astrophysics (original) (raw)
Uploads
Papers by Bruno Henriques
We introduce a statistical exploration of the parameter space of the Munich semi-analytic model b... more We introduce a statistical exploration of the parameter space of the Munich semi-analytic model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain (MCMC) method to constrain the 6 free parameters that define the stellar ...
Monthly Notices of …, Jan 1, 2011
We address the fundamental question of matching the rest-frame K-band luminosity function (LF) of... more We address the fundamental question of matching the rest-frame K-band luminosity function (LF) of galaxies over the Hubble time using semi-analytic models, after modification of the stellar population modelling. We include the Maraston evolutionary synthesis models, that feature a higher contribution by the Thermally Pulsating -Asymptotic Giant Branch (TP-AGB) stellar phase, into three different semi-analytic models, namely the De Lucia and Blaizot version of the Munich model, morgana and the Menci model. We leave all other input physics and parameters unchanged.
Monthly Notices of the Royal …, Jan 1, 2010
Monthly Notices of the …, Jan 1, 2009
We present a statistical exploration of the parameter space of the De Lucia and Blaizot version o... more We present a statistical exploration of the parameter space of the De Lucia and Blaizot version of the Munich semi-analytic (SA) model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain method to constrain the 6 free parameters that define the stellar and black-hole mass functions at redshift zero. The model is tested against three different observational data sets, including the galaxy K-band luminosity function, B − V colours, and the black hole-bulge mass relation, separately and combined, to obtain mean values, confidence limits and likelihood contours for the best fit model. Using each observational data set independently, we discuss how the SA model parameters affect each galaxy property and find that there are strong correlations between them. We analyse to what extent these are simply reflections of the observational constraints, or whether they can lead to improved understandings of the physics of galaxy formation.
Monthly Notices of the …, Jan 1, 2008
We present results for a galaxy formation model that includes a simple treatment for the disrupti... more We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at z = 0. We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour-magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.
We introduce a statistical exploration of the parameter space of the Munich semi-analytic model b... more We introduce a statistical exploration of the parameter space of the Munich semi-analytic model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain (MCMC) method to constrain the 6 free parameters that define the stellar ...
Monthly Notices of …, Jan 1, 2011
We address the fundamental question of matching the rest-frame K-band luminosity function (LF) of... more We address the fundamental question of matching the rest-frame K-band luminosity function (LF) of galaxies over the Hubble time using semi-analytic models, after modification of the stellar population modelling. We include the Maraston evolutionary synthesis models, that feature a higher contribution by the Thermally Pulsating -Asymptotic Giant Branch (TP-AGB) stellar phase, into three different semi-analytic models, namely the De Lucia and Blaizot version of the Munich model, morgana and the Menci model. We leave all other input physics and parameters unchanged.
Monthly Notices of the Royal …, Jan 1, 2010
Monthly Notices of the …, Jan 1, 2009
We present a statistical exploration of the parameter space of the De Lucia and Blaizot version o... more We present a statistical exploration of the parameter space of the De Lucia and Blaizot version of the Munich semi-analytic (SA) model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain method to constrain the 6 free parameters that define the stellar and black-hole mass functions at redshift zero. The model is tested against three different observational data sets, including the galaxy K-band luminosity function, B − V colours, and the black hole-bulge mass relation, separately and combined, to obtain mean values, confidence limits and likelihood contours for the best fit model. Using each observational data set independently, we discuss how the SA model parameters affect each galaxy property and find that there are strong correlations between them. We analyse to what extent these are simply reflections of the observational constraints, or whether they can lead to improved understandings of the physics of galaxy formation.
Monthly Notices of the …, Jan 1, 2008
We present results for a galaxy formation model that includes a simple treatment for the disrupti... more We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at z = 0. We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour-magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.