Megan Frost | Michigan Technological University (original) (raw)
Papers by Megan Frost
Bioengineering, Sep 5, 2018
Polyvinyl chloride (PVC) is one of the most widely used polymers in medicine but has very poor bi... more Polyvinyl chloride (PVC) is one of the most widely used polymers in medicine but has very poor biocompatibility when in contact with tissue or blood. To increase biocompatibility, controlled release of nitric oxide (NO) can be utilized to mitigate and reduce the inflammatory response. A synthetic route is described where PVC is aminated to a specified degree and then further modified by covalently linking S-nitroso-N-acetyl-D-penicillamine (SNAP) groups to the free primary amine sites to create a nitric oxide releasing polymer (SNAP-PVC). Controllable release of NO from SNAP-PVC is described using photoinitiation from light emitting diodes (LEDs). Ion-mediated NO release is also demonstrated as another pathway to provide a passive mechanism for NO delivery. The large range of NO fluxes obtained from the SNAP-PVC films indicate many potential uses in mediating unwanted inflammatory response in blood-and tissue-contacting devices and as a tool for delivering precise amounts of NO in vitro.
Bioengineering, Jan 10, 2020
Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects wh... more Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects when incorporated into biomedical materials. When released in the correct dosage, NO has been shown to increase the biocompatibility of blood and tissue contacting materials, but materials are often limited in the amount of NO that can be administered over a period of time. To address this, hyperbranched polyamidoamine (HPAMAM) was modified with the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine, and nitrosated to form a controlled, high-capacity NO-donating compound (SNAP-HPAMAM). This compound has the potential of modifying polymers to release NO over long periods of time by being blended into a variety of base polymers. Nitric oxide release was triggered by photoinitiation and through passive ion-mediated release seen under physiological conditions. A material that delivers the beneficial dose of NO over a long period of time would be able to greatly increase the biocompatibility of long-term implantable devices. Structural analysis of a generation 2 HPAMAM molecule was done through Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance spectroscopy (NMR), and matrix assisted laser desorption ionization, time of flight (MALDI-TOF) mass spectrometry. The NO capacity of the finalized generation 2 SNAP-HPAMAM compound was approximately 1.90 ± 0.116 µmol NO/mg. Quantification of the functional groups in the compound proved that an average of 6.40 ± 0.309 reactive primary amine sites were present compared to the 8 reactive sites on a perfectly synthesized generation 2 dendrimer. There is a substantial advantage of using the hyper-branched HPAMAM over purified dendrimers in terms of reduced labor and expense while still providing a high-capacity NO donor that can be blended into different polymer matrices.
Medical Sciences, Nov 9, 2018
Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired... more Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired nitric oxide (NO) production has been shown to be a major contributor to the dysregulation of healing in DFU. The level of impairment is not known primarily due to challenges with measuring NO. Herein, we report the actual level of NO produced by human dermal fibroblasts cultured under normal and high glucose conditions. Fibroblasts produce the extracellular matrix, which facilitate the migration of keratinocytes to close wounds. The results show that NO production was significantly higher in normal glucose compared to high glucose conditions. The real-time NO detected was compared to the nitrite present in the culture media and there was a direct correlation between real-time NO and nitrite in normal glucose conditions. However, real-time NO detection and nitrite measurement did not correlate under high glucose conditions. The inducible nitric oxide synthase (iNOS) enzyme responsible for NO production was upregulated in normal and high glucose conditions and the proliferation rate of fibroblasts was not statistically different in all the treatment groups. Relying only on nitrite to assess NO production is not an accurate determinant of the NO present in the wound bed in pathological states such as diabetes mellitus.
Frontiers in Materials
Orthodontic treatment commonly requires the need to prevent movement of some teeth while maximizi... more Orthodontic treatment commonly requires the need to prevent movement of some teeth while maximizing movement of other teeth. This study aimed to investigate the influence of locally injected nitric oxide (NO) releasing nanoparticles on orthodontic tooth movement in rats. Materials and Methods: Experimental tooth movement was achieved with nickel-titanium alloy springs ligated between the maxillary first molar and ipsilateral incisor. 2.2 mg/kg of silica nanoparticles containing S-nitrosothiol groups were injected into the mucosa just mesial to 1st molar teeth immediately prior to orthodontic appliance activation. NO release from nanoparticles was measured in vitro by chemiluminescence. Tooth movement was measured using polyvinyl siloxane impressions. Bones were analyzed by microcomputed tomography. Local tissue was assessed by histomorphometry. Results: Nanoparticles released a burst of NO within the first hours at approximately 10 ppb/mg particles that diminished by 10 × to approxi...
Journal of Functional Biomaterials
The development of an ideal vascular prosthesis represents an important challenge in terms of the... more The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resem...
The present invention provides stable, photosensitive polymers that release NO response to intens... more The present invention provides stable, photosensitive polymers that release NO response to intensity and wavelength of light, methods of making such polymers and methods using such polymers.https://digitalcommons.mtu.edu/patents/1140/thumbnail.jp
A device including a first chamber, a second chamber, and a membrane permeable to neutral gases b... more A device including a first chamber, a second chamber, and a membrane permeable to neutral gases but impermeable to water that is positioned between the first chamber and the second chamber. The membrane includes a first layer including PVDF and PDMS, and the PVDF has a plurality of pores at least partially filled with at least some of the PDMS.https://digitalcommons.mtu.edu/patents/1152/thumbnail.jp
Analytical Chemistry, 2003
Bioengineering
Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects wh... more Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects when incorporated into biomedical materials. When released in the correct dosage, NO has been shown to increase the biocompatibility of blood and tissue contacting materials, but materials are often limited in the amount of NO that can be administered over a period of time. To address this, hyperbranched polyamidoamine (HPAMAM) was modified with the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine, and nitrosated to form a controlled, high-capacity NO-donating compound (SNAP-HPAMAM). This compound has the potential of modifying polymers to release NO over long periods of time by being blended into a variety of base polymers. Nitric oxide release was triggered by photoinitiation and through passive ion-mediated release seen under physiological conditions. A material that delivers the beneficial dose of NO over a long period of time would be able to greatly increase the biocompatibility of...
Journal of Medical Devices
Biomedical devices that contact blood and tissue universally inspire a host response that often c... more Biomedical devices that contact blood and tissue universally inspire a host response that often compromises the function of the device (i.e., intravascular sensors become coated with thrombi, artificial vascular grafts become coated with thrombi, artificial vascular grafts become occluded with thrombus formation and neointimal hyperplasia). Nitric oxide (NO) has been shown to be a potent inhibitor of platelet adhesion and activation and has been implicated in mediating the inflammatory response and promoting would healing. We are currently developing NO-releasing compounds based on S-nitrosothiols derived from substituted aromatic compounds that utilize light as an external on/off trigger capable of releasing precisely controlled surface fluxes of NO. The level of NO generated is dependent on the wavelength and intensity of light shown on the compounds. Data will be presented that show the synthesis and NO-release properties of three novel compounds, S-nitroso-2-methoxybenzene, S-ni...
Journal of Biomedical Materials Research Part B: Applied Biomaterials
Medical Sciences
Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired... more Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired nitric oxide (NO) production has been shown to be a major contributor to the dysregulation of healing in DFU. The level of impairment is not known primarily due to challenges with measuring NO. Herein, we report the actual level of NO produced by human dermal fibroblasts cultured under normal and high glucose conditions. Fibroblasts produce the extracellular matrix, which facilitate the migration of keratinocytes to close wounds. The results show that NO production was significantly higher in normal glucose compared to high glucose conditions. The real-time NO detected was compared to the nitrite present in the culture media and there was a direct correlation between real-time NO and nitrite in normal glucose conditions. However, real-time NO detection and nitrite measurement did not correlate under high glucose conditions. The inducible nitric oxide synthase (iNOS) enzyme responsible f...
Free Radical Biology and Medicine
Redox Biology
Nitric oxide (NO), is arguably one of the most important small signaling molecules in biological ... more Nitric oxide (NO), is arguably one of the most important small signaling molecules in biological systems. It regulates various biological responses in both physiological and pathological conditions, often time producing seemingly contradictory results. The details of the effects of NO are highly dependent on the level of NO that cells experience and the temporal aspect of when and how long cells are exposed to NO. Herein, we present a novel measurement system (CellNO trap) that allows real-time NO measurement via chemiluminescence detection from general adhesive cultured cells using standard cell culture media and reagents that does not perturb the cells under investigation. Highly controlled light-initiated NO releasing polymer SNAP-PDMS was used to characterize and validate the quantitative data nature of the device. The NO generation profile from the macrophage cell-line RAW264.7 stimulated by 100 ng/ml LPS and 10 ng/ml IFN-γ was recorded. Measured maximum NO flux from RAW264.7 varied between around 2.5-9 pmol/10 6 cell/s under 100 ng/ml LPS and 10 ng/ml IFN-γ stimulation, and 24 h cumulative NO varied between 157 and 406 nmol/10 6 cell depending on different culture conditions, indicating the conventional report of an average flux or maximum flux is not sufficient to represent the dynamic characters of NO. LPS and IFN-γ's synergistic effect to RAW264.7 NO generation was also directly observed with the CellNO trap. The real-time effect on the NO generation from RAW264.7 following the addition of arginine, nor-NOHA and L-NAME to the cultured cells is presented. There is great potential to further our understanding of the role NO plays in normal and pathological conditions clearly understanding the dynamic production of NO in response to different stimuli and conditions; use of CellNO trap makes it possible to quantitatively determine the precise NO release profile generated from cells in a continuous and real-time manner with chemiluminescence detection.
Redox Biology
Applying soluble nitric oxide (NO) donors is the most widely used method to expose cells of inter... more Applying soluble nitric oxide (NO) donors is the most widely used method to expose cells of interest to exogenous NO. Because of the complex equilibria that exist between components in culture media, the donor compound and NO itself, it is very challenging to predict the dose and duration of NO cells actually experience. To determine the actual level of NO experienced by cells exposed to soluble NO donors, we developed the CellNO Trap, a device that allows continuous, real-time monitoring of the level of NO adherent cells produce and/or experience in culture without the need to alter cell culturing procedures. Herein, we directly measured the level of NO that cells grown in the CellNO Trap experienced when soluble NO donors were added to solutions in culture wells and we characterized environmental conditions that effected the level of NO in in vitro culture conditions. Specifically, the dose and duration of NO generated by the soluble donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO) and the diazeniumdiolate diethyltriamine (DETA/NO) were investigated in both phosphate buffered saline (PBS) and cell culture media. Other factors that were studied that potentially affect the ultimate NO level achieved with these donors included pH, presence of transition metals (ion species), redox level, presence of free thiol and relative volume of media. Then murine smooth muscle cell (MOVAS) with different NO donors but with the same effective concentration of available NO were examined and it was demonstrated that the cell proliferation ratio observed does not correlate with the half-lives of NO donors characterized in PBS, but does correlate well with the realtime NO profiles measured under the actual culture conditions. This data demonstrates the dynamic characteristic of the NO and NO donor in different biological systems and clearly illustrates the importance of tracking individual NO profiles under the actual biological conditions.
ACS Applied Materials & Interfaces, 2016
Nitric oxide (NO), identified over the last several decades in many physiological processes and p... more Nitric oxide (NO), identified over the last several decades in many physiological processes and pathways as both a beneficial and detrimental signaling molecule, has been the subject of extensive research. Physiologically, NO is transported by a class of donors known as S-nitrosothiols. Both endogenous and synthetic S-nitrosothiols have been reported to release NO during interactions with certain transition metals, primarily Cu(2+) and Fe(2+). Ag(+) and Hg(2+) have also been identified, although these metals are not abundantly present in physiological systems. Here, we evaluate Pt(2+), Fe(2+), Fe(3+), Mg(2+), Zn(2+), Mn(2+), Co(2+), Ni(2+), and Cu(2+) for their ability to generate NO from S-nitroso-N-acetyl-d-penicillamine (SNAP) under physiological pH conditions. Specifically, we report NO generation from RSNOs initiated by three transition metal ions; Co(2+), Ni(2+), and Zn(2+), which have not been previously reported to generate NO. Additionally, preliminary in vivo evidence of zinc wires implanted in the rat arterial wall and circulating blood is presented which demonstrated inhibited thrombus formation after 6 months. One potentially useful application of these metal ions capable of generating NO from RSNOs is their use in the fabrication of biodegradable metallic stents capable of generating NO at the stent-blood interface, thereby reducing stent-related thrombosis and restenosis.
ACS applied materials & interfaces, Jan 26, 2016
Nitric oxide (NO) has been heavily studied over the past two decades due to its multitude of phys... more Nitric oxide (NO) has been heavily studied over the past two decades due to its multitude of physiological functions and its potential therapeutic promise. Of major interest is the desire to fabricate or coat implanted devices with an NO releasing material that will impart the appropriate dose and duration of NO release to positively mediate the biological response to the medical device, thereby improving its safety and efficacy. To date, this goal has not yet been achieved, despite very promising early research. Herein, we describe the synthesis and NO release properties of a novel NO donor which covalently links the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine (SNAP), to the macrocycle, cyclam (SNAP-cyclam). This compound can then be blended into a wide variety of polymer matrices, imparting NO release to the polymer system. This release can be initiated and controlled by transition metal catalysis, thermal degradation or photolytic release of NO from the composite NO-releas...
Annual Review of Analytical Chemistry, 2015
We review approaches and challenges in developing chemical sensor-based methods to accurately and... more We review approaches and challenges in developing chemical sensor-based methods to accurately and continuously monitor levels of key analytes in blood related directly to the status of critically ill hospitalized patients. Electrochemical and optical sensor-based technologies have been pursued to measure important critical care species in blood [i.e., oxygen, carbon dioxide, pH, electrolytes (K+, Na+, Cl−, etc.), glucose, and lactate] in real-time or near real-time. The two main configurations examined to date for achieving this goal have been intravascular catheter sensors and patient attached ex vivo sensors with intermittent blood sampling via an attached indwelling catheter. We discuss the status of these configurations and the main issues affecting the accuracy of the measurements, including cell adhesion and thrombus formation on the surface of the sensors, sensor drift, sensor selectivity, etc. Recent approaches to mitigate these nagging performance issues that have prevented...
Bioengineering, Sep 5, 2018
Polyvinyl chloride (PVC) is one of the most widely used polymers in medicine but has very poor bi... more Polyvinyl chloride (PVC) is one of the most widely used polymers in medicine but has very poor biocompatibility when in contact with tissue or blood. To increase biocompatibility, controlled release of nitric oxide (NO) can be utilized to mitigate and reduce the inflammatory response. A synthetic route is described where PVC is aminated to a specified degree and then further modified by covalently linking S-nitroso-N-acetyl-D-penicillamine (SNAP) groups to the free primary amine sites to create a nitric oxide releasing polymer (SNAP-PVC). Controllable release of NO from SNAP-PVC is described using photoinitiation from light emitting diodes (LEDs). Ion-mediated NO release is also demonstrated as another pathway to provide a passive mechanism for NO delivery. The large range of NO fluxes obtained from the SNAP-PVC films indicate many potential uses in mediating unwanted inflammatory response in blood-and tissue-contacting devices and as a tool for delivering precise amounts of NO in vitro.
Bioengineering, Jan 10, 2020
Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects wh... more Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects when incorporated into biomedical materials. When released in the correct dosage, NO has been shown to increase the biocompatibility of blood and tissue contacting materials, but materials are often limited in the amount of NO that can be administered over a period of time. To address this, hyperbranched polyamidoamine (HPAMAM) was modified with the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine, and nitrosated to form a controlled, high-capacity NO-donating compound (SNAP-HPAMAM). This compound has the potential of modifying polymers to release NO over long periods of time by being blended into a variety of base polymers. Nitric oxide release was triggered by photoinitiation and through passive ion-mediated release seen under physiological conditions. A material that delivers the beneficial dose of NO over a long period of time would be able to greatly increase the biocompatibility of long-term implantable devices. Structural analysis of a generation 2 HPAMAM molecule was done through Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance spectroscopy (NMR), and matrix assisted laser desorption ionization, time of flight (MALDI-TOF) mass spectrometry. The NO capacity of the finalized generation 2 SNAP-HPAMAM compound was approximately 1.90 ± 0.116 µmol NO/mg. Quantification of the functional groups in the compound proved that an average of 6.40 ± 0.309 reactive primary amine sites were present compared to the 8 reactive sites on a perfectly synthesized generation 2 dendrimer. There is a substantial advantage of using the hyper-branched HPAMAM over purified dendrimers in terms of reduced labor and expense while still providing a high-capacity NO donor that can be blended into different polymer matrices.
Medical Sciences, Nov 9, 2018
Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired... more Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired nitric oxide (NO) production has been shown to be a major contributor to the dysregulation of healing in DFU. The level of impairment is not known primarily due to challenges with measuring NO. Herein, we report the actual level of NO produced by human dermal fibroblasts cultured under normal and high glucose conditions. Fibroblasts produce the extracellular matrix, which facilitate the migration of keratinocytes to close wounds. The results show that NO production was significantly higher in normal glucose compared to high glucose conditions. The real-time NO detected was compared to the nitrite present in the culture media and there was a direct correlation between real-time NO and nitrite in normal glucose conditions. However, real-time NO detection and nitrite measurement did not correlate under high glucose conditions. The inducible nitric oxide synthase (iNOS) enzyme responsible for NO production was upregulated in normal and high glucose conditions and the proliferation rate of fibroblasts was not statistically different in all the treatment groups. Relying only on nitrite to assess NO production is not an accurate determinant of the NO present in the wound bed in pathological states such as diabetes mellitus.
Frontiers in Materials
Orthodontic treatment commonly requires the need to prevent movement of some teeth while maximizi... more Orthodontic treatment commonly requires the need to prevent movement of some teeth while maximizing movement of other teeth. This study aimed to investigate the influence of locally injected nitric oxide (NO) releasing nanoparticles on orthodontic tooth movement in rats. Materials and Methods: Experimental tooth movement was achieved with nickel-titanium alloy springs ligated between the maxillary first molar and ipsilateral incisor. 2.2 mg/kg of silica nanoparticles containing S-nitrosothiol groups were injected into the mucosa just mesial to 1st molar teeth immediately prior to orthodontic appliance activation. NO release from nanoparticles was measured in vitro by chemiluminescence. Tooth movement was measured using polyvinyl siloxane impressions. Bones were analyzed by microcomputed tomography. Local tissue was assessed by histomorphometry. Results: Nanoparticles released a burst of NO within the first hours at approximately 10 ppb/mg particles that diminished by 10 × to approxi...
Journal of Functional Biomaterials
The development of an ideal vascular prosthesis represents an important challenge in terms of the... more The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resem...
The present invention provides stable, photosensitive polymers that release NO response to intens... more The present invention provides stable, photosensitive polymers that release NO response to intensity and wavelength of light, methods of making such polymers and methods using such polymers.https://digitalcommons.mtu.edu/patents/1140/thumbnail.jp
A device including a first chamber, a second chamber, and a membrane permeable to neutral gases b... more A device including a first chamber, a second chamber, and a membrane permeable to neutral gases but impermeable to water that is positioned between the first chamber and the second chamber. The membrane includes a first layer including PVDF and PDMS, and the PVDF has a plurality of pores at least partially filled with at least some of the PDMS.https://digitalcommons.mtu.edu/patents/1152/thumbnail.jp
Analytical Chemistry, 2003
Bioengineering
Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects wh... more Synthetic nitric oxide (NO)-donating materials have been shown to have many beneficial effects when incorporated into biomedical materials. When released in the correct dosage, NO has been shown to increase the biocompatibility of blood and tissue contacting materials, but materials are often limited in the amount of NO that can be administered over a period of time. To address this, hyperbranched polyamidoamine (HPAMAM) was modified with the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine, and nitrosated to form a controlled, high-capacity NO-donating compound (SNAP-HPAMAM). This compound has the potential of modifying polymers to release NO over long periods of time by being blended into a variety of base polymers. Nitric oxide release was triggered by photoinitiation and through passive ion-mediated release seen under physiological conditions. A material that delivers the beneficial dose of NO over a long period of time would be able to greatly increase the biocompatibility of...
Journal of Medical Devices
Biomedical devices that contact blood and tissue universally inspire a host response that often c... more Biomedical devices that contact blood and tissue universally inspire a host response that often compromises the function of the device (i.e., intravascular sensors become coated with thrombi, artificial vascular grafts become coated with thrombi, artificial vascular grafts become occluded with thrombus formation and neointimal hyperplasia). Nitric oxide (NO) has been shown to be a potent inhibitor of platelet adhesion and activation and has been implicated in mediating the inflammatory response and promoting would healing. We are currently developing NO-releasing compounds based on S-nitrosothiols derived from substituted aromatic compounds that utilize light as an external on/off trigger capable of releasing precisely controlled surface fluxes of NO. The level of NO generated is dependent on the wavelength and intensity of light shown on the compounds. Data will be presented that show the synthesis and NO-release properties of three novel compounds, S-nitroso-2-methoxybenzene, S-ni...
Journal of Biomedical Materials Research Part B: Applied Biomaterials
Medical Sciences
Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired... more Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired nitric oxide (NO) production has been shown to be a major contributor to the dysregulation of healing in DFU. The level of impairment is not known primarily due to challenges with measuring NO. Herein, we report the actual level of NO produced by human dermal fibroblasts cultured under normal and high glucose conditions. Fibroblasts produce the extracellular matrix, which facilitate the migration of keratinocytes to close wounds. The results show that NO production was significantly higher in normal glucose compared to high glucose conditions. The real-time NO detected was compared to the nitrite present in the culture media and there was a direct correlation between real-time NO and nitrite in normal glucose conditions. However, real-time NO detection and nitrite measurement did not correlate under high glucose conditions. The inducible nitric oxide synthase (iNOS) enzyme responsible f...
Free Radical Biology and Medicine
Redox Biology
Nitric oxide (NO), is arguably one of the most important small signaling molecules in biological ... more Nitric oxide (NO), is arguably one of the most important small signaling molecules in biological systems. It regulates various biological responses in both physiological and pathological conditions, often time producing seemingly contradictory results. The details of the effects of NO are highly dependent on the level of NO that cells experience and the temporal aspect of when and how long cells are exposed to NO. Herein, we present a novel measurement system (CellNO trap) that allows real-time NO measurement via chemiluminescence detection from general adhesive cultured cells using standard cell culture media and reagents that does not perturb the cells under investigation. Highly controlled light-initiated NO releasing polymer SNAP-PDMS was used to characterize and validate the quantitative data nature of the device. The NO generation profile from the macrophage cell-line RAW264.7 stimulated by 100 ng/ml LPS and 10 ng/ml IFN-γ was recorded. Measured maximum NO flux from RAW264.7 varied between around 2.5-9 pmol/10 6 cell/s under 100 ng/ml LPS and 10 ng/ml IFN-γ stimulation, and 24 h cumulative NO varied between 157 and 406 nmol/10 6 cell depending on different culture conditions, indicating the conventional report of an average flux or maximum flux is not sufficient to represent the dynamic characters of NO. LPS and IFN-γ's synergistic effect to RAW264.7 NO generation was also directly observed with the CellNO trap. The real-time effect on the NO generation from RAW264.7 following the addition of arginine, nor-NOHA and L-NAME to the cultured cells is presented. There is great potential to further our understanding of the role NO plays in normal and pathological conditions clearly understanding the dynamic production of NO in response to different stimuli and conditions; use of CellNO trap makes it possible to quantitatively determine the precise NO release profile generated from cells in a continuous and real-time manner with chemiluminescence detection.
Redox Biology
Applying soluble nitric oxide (NO) donors is the most widely used method to expose cells of inter... more Applying soluble nitric oxide (NO) donors is the most widely used method to expose cells of interest to exogenous NO. Because of the complex equilibria that exist between components in culture media, the donor compound and NO itself, it is very challenging to predict the dose and duration of NO cells actually experience. To determine the actual level of NO experienced by cells exposed to soluble NO donors, we developed the CellNO Trap, a device that allows continuous, real-time monitoring of the level of NO adherent cells produce and/or experience in culture without the need to alter cell culturing procedures. Herein, we directly measured the level of NO that cells grown in the CellNO Trap experienced when soluble NO donors were added to solutions in culture wells and we characterized environmental conditions that effected the level of NO in in vitro culture conditions. Specifically, the dose and duration of NO generated by the soluble donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO) and the diazeniumdiolate diethyltriamine (DETA/NO) were investigated in both phosphate buffered saline (PBS) and cell culture media. Other factors that were studied that potentially affect the ultimate NO level achieved with these donors included pH, presence of transition metals (ion species), redox level, presence of free thiol and relative volume of media. Then murine smooth muscle cell (MOVAS) with different NO donors but with the same effective concentration of available NO were examined and it was demonstrated that the cell proliferation ratio observed does not correlate with the half-lives of NO donors characterized in PBS, but does correlate well with the realtime NO profiles measured under the actual culture conditions. This data demonstrates the dynamic characteristic of the NO and NO donor in different biological systems and clearly illustrates the importance of tracking individual NO profiles under the actual biological conditions.
ACS Applied Materials & Interfaces, 2016
Nitric oxide (NO), identified over the last several decades in many physiological processes and p... more Nitric oxide (NO), identified over the last several decades in many physiological processes and pathways as both a beneficial and detrimental signaling molecule, has been the subject of extensive research. Physiologically, NO is transported by a class of donors known as S-nitrosothiols. Both endogenous and synthetic S-nitrosothiols have been reported to release NO during interactions with certain transition metals, primarily Cu(2+) and Fe(2+). Ag(+) and Hg(2+) have also been identified, although these metals are not abundantly present in physiological systems. Here, we evaluate Pt(2+), Fe(2+), Fe(3+), Mg(2+), Zn(2+), Mn(2+), Co(2+), Ni(2+), and Cu(2+) for their ability to generate NO from S-nitroso-N-acetyl-d-penicillamine (SNAP) under physiological pH conditions. Specifically, we report NO generation from RSNOs initiated by three transition metal ions; Co(2+), Ni(2+), and Zn(2+), which have not been previously reported to generate NO. Additionally, preliminary in vivo evidence of zinc wires implanted in the rat arterial wall and circulating blood is presented which demonstrated inhibited thrombus formation after 6 months. One potentially useful application of these metal ions capable of generating NO from RSNOs is their use in the fabrication of biodegradable metallic stents capable of generating NO at the stent-blood interface, thereby reducing stent-related thrombosis and restenosis.
ACS applied materials & interfaces, Jan 26, 2016
Nitric oxide (NO) has been heavily studied over the past two decades due to its multitude of phys... more Nitric oxide (NO) has been heavily studied over the past two decades due to its multitude of physiological functions and its potential therapeutic promise. Of major interest is the desire to fabricate or coat implanted devices with an NO releasing material that will impart the appropriate dose and duration of NO release to positively mediate the biological response to the medical device, thereby improving its safety and efficacy. To date, this goal has not yet been achieved, despite very promising early research. Herein, we describe the synthesis and NO release properties of a novel NO donor which covalently links the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine (SNAP), to the macrocycle, cyclam (SNAP-cyclam). This compound can then be blended into a wide variety of polymer matrices, imparting NO release to the polymer system. This release can be initiated and controlled by transition metal catalysis, thermal degradation or photolytic release of NO from the composite NO-releas...
Annual Review of Analytical Chemistry, 2015
We review approaches and challenges in developing chemical sensor-based methods to accurately and... more We review approaches and challenges in developing chemical sensor-based methods to accurately and continuously monitor levels of key analytes in blood related directly to the status of critically ill hospitalized patients. Electrochemical and optical sensor-based technologies have been pursued to measure important critical care species in blood [i.e., oxygen, carbon dioxide, pH, electrolytes (K+, Na+, Cl−, etc.), glucose, and lactate] in real-time or near real-time. The two main configurations examined to date for achieving this goal have been intravascular catheter sensors and patient attached ex vivo sensors with intermittent blood sampling via an attached indwelling catheter. We discuss the status of these configurations and the main issues affecting the accuracy of the measurements, including cell adhesion and thrombus formation on the surface of the sensors, sensor drift, sensor selectivity, etc. Recent approaches to mitigate these nagging performance issues that have prevented...