std/macros (original) (raw)

Source Edit

This module contains the interface to the compiler's abstract syntax tree (AST). Macros operate on this tree.

See also:

The AST in Nim

This section describes how the AST is modelled with Nim's type system. The AST consists of nodes (NimNode) with a variable number of children. Each node has a field named kind which describes what the node contains:

type NimNodeKind = enum
nnkNone,
nnkEmpty,
nnkIdent,
nnkIntLit,
nnkStrLit,
nnkNilLit,
nnkCaseStmt,
...

NimNode = ref NimNodeObj NimNodeObj = object case kind: NimNodeKind
of nnkNone, nnkEmpty, nnkNilLit: discard
of nnkCharLit..nnkUInt64Lit: intVal: BiggestInt
of nnkFloatLit..nnkFloat64Lit: floatVal: BiggestFloat
of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym: strVal: string
else: sons: seq[NimNode]

For the NimNode type, the [] operator has been overloaded: n[i] is n's i-th child.

To specify the AST for the different Nim constructs, the notation nodekind(son1, son2, ...) or nodekind(value) or nodekind(field=value) is used.

Some child may be missing. A missing child is a node of kind nnkEmpty; a child can never be nil.

Leaf nodes/Atoms

A leaf of the AST often corresponds to a terminal symbol in the concrete syntax. Note that the default float in Nim maps to float64 such that the default AST for a float is nnkFloat64Lit as below.

Nim expression Corresponding AST
42 nnkIntLit(intVal = 42)
42'i8 nnkInt8Lit(intVal = 42)
42'i16 nnkInt16Lit(intVal = 42)
42'i32 nnkInt32Lit(intVal = 42)
42'i64 nnkInt64Lit(intVal = 42)
42'u8 nnkUInt8Lit(intVal = 42)
42'u16 nnkUInt16Lit(intVal = 42)
42'u32 nnkUInt32Lit(intVal = 42)
42'u64 nnkUInt64Lit(intVal = 42)
42.0 nnkFloat64Lit(floatVal = 42.0)
42.0'f32 nnkFloat32Lit(floatVal = 42.0)
42.0'f64 nnkFloat64Lit(floatVal = 42.0)
"abc" nnkStrLit(strVal = "abc")
r"abc" nnkRStrLit(strVal = "abc")
"""abc""" nnkTripleStrLit(strVal = "abc")
' ' nnkCharLit(intVal = 32)
nil nnkNilLit()
myIdentifier nnkIdent(strVal = "myIdentifier")
myIdentifier after lookup pass: nnkSym(strVal = "myIdentifier", ...)

Identifiers are nnkIdent nodes. After the name lookup pass these nodes get transferred into nnkSym nodes.

Calls/expressions

Command call

Concrete syntax:

echo "abc", "xyz"

AST:

nnkCommand( nnkIdent("echo"), nnkStrLit("abc"), nnkStrLit("xyz") )

Call with ()

Concrete syntax:

echo("abc", "xyz")

AST:

nnkCall( nnkIdent("echo"), nnkStrLit("abc"), nnkStrLit("xyz") )

Infix operator call

Concrete syntax:

"abc" & "xyz"

AST:

nnkInfix( nnkIdent("&"), nnkStrLit("abc"), nnkStrLit("xyz") )

Note that with multiple infix operators, the command is parsed by operator precedence.

Concrete syntax:

5 + 3 * 4

AST:

nnkInfix( nnkIdent("+"), nnkIntLit(5), nnkInfix( nnkIdent("*"), nnkIntLit(3), nnkIntLit(4) ) )

As a side note, if you choose to use infix operators in a prefix form, the AST behaves as a parenthetical function call with nnkAccQuoted, as follows:

Concrete syntax:

+(3, 4)

AST:

nnkCall( nnkAccQuoted( nnkIdent("+") ), nnkIntLit(3), nnkIntLit(4) )

Prefix operator call

Concrete syntax:

? "xyz"

AST:

nnkPrefix( nnkIdent("?"), nnkStrLit("abc") )

Postfix operator call

Note: There are no postfix operators in Nim. However, the nnkPostfix node is used for the asterisk export marker *:

Concrete syntax:

identifier*

AST:

nnkPostfix( nnkIdent("*"), nnkIdent("identifier") )

Call with named arguments

Concrete syntax:

writeLine(file=stdout, "hallo")

AST:

nnkCall( nnkIdent("writeLine"), nnkExprEqExpr( nnkIdent("file"), nnkIdent("stdout") ), nnkStrLit("hallo") )

Call with raw string literal

This is used, for example, in the bindSym examples here and with re"some regexp" in the regular expression module.

Concrete syntax:

echo"abc"

AST:

nnkCallStrLit( nnkIdent("echo"), nnkRStrLit("hello") )

Dereference operator []

Concrete syntax:

x[]

AST:

nnkDerefExpr(nnkIdent("x"))

Addr operator

Concrete syntax:

addr(x)

AST:

nnkAddr(nnkIdent("x"))

Cast operator

Concrete syntax:

castT

AST:

nnkCast(nnkIdent("T"), nnkIdent("x"))

Object access operator .

Concrete syntax:

x.y

AST:

nnkDotExpr(nnkIdent("x"), nnkIdent("y"))

If you use Nim's flexible calling syntax (as in x.len()), the result is the same as above but wrapped in an nnkCall.

Array access operator []

Concrete syntax:

x[y]

AST:

nnkBracketExpr(nnkIdent("x"), nnkIdent("y"))

Parentheses

Parentheses for affecting operator precedence use the nnkPar node.

Concrete syntax:

(a + b) * c

AST:

nnkInfix(nnkIdent("*"), nnkPar( nnkInfix(nnkIdent("+"), nnkIdent("a"), nnkIdent("b"))), nnkIdent("c"))

Tuple Constructors

Nodes for tuple construction are built with the nnkTupleConstr node.

Concrete syntax:

(1, 2, 3) (a: 1, b: 2, c: 3) ()

AST:

nnkTupleConstr(nnkIntLit(1), nnkIntLit(2), nnkIntLit(3)) nnkTupleConstr( nnkExprColonExpr(nnkIdent("a"), nnkIntLit(1)), nnkExprColonExpr(nnkIdent("b"), nnkIntLit(2)), nnkExprColonExpr(nnkIdent("c"), nnkIntLit(3))) nnkTupleConstr()

Since the one tuple would be syntactically identical to parentheses with an expression in them, the parser expects a trailing comma for them. For tuple constructors with field names, this is not necessary.

(1,) (a: 1)

AST:

nnkTupleConstr(nnkIntLit(1)) nnkTupleConstr( nnkExprColonExpr(nnkIdent("a"), nnkIntLit(1)))

Curly braces

Curly braces are used as the set constructor.

Concrete syntax:

{1, 2, 3}

AST:

nnkCurly(nnkIntLit(1), nnkIntLit(2), nnkIntLit(3))

When used as a table constructor, the syntax is different.

Concrete syntax:

{a: 3, b: 5}

AST:

nnkTableConstr( nnkExprColonExpr(nnkIdent("a"), nnkIntLit(3)), nnkExprColonExpr(nnkIdent("b"), nnkIntLit(5)) )

Brackets

Brackets are used as the array constructor.

Concrete syntax:

[1, 2, 3]

AST:

nnkBracket(nnkIntLit(1), nnkIntLit(2), nnkIntLit(3))

Ranges

Ranges occur in set constructors, case statement branches, or array slices. Internally, the node kind nnkRange is used, but when constructing the AST, construction with .. as an infix operator should be used instead.

Concrete syntax:

1..3

AST:

nnkInfix( nnkIdent(".."), nnkIntLit(1), nnkIntLit(3) )

Example code:

macro genRepeatEcho() = result = newNimNode(nnkStmtList)

var forStmt = newNimNode(nnkForStmt) forStmt.add(ident("i"))

var rangeDef = newNimNode(nnkInfix).add( ident("..")).add( newIntLitNode(3),newIntLitNode(5))

forStmt.add(rangeDef) forStmt.add(newCall(ident("echo"), newIntLitNode(3))) result.add(forStmt)

genRepeatEcho()

If expression

The representation of the if expression is subtle, but easy to traverse.

Concrete syntax:

if cond1: expr1 elif cond2: expr2 else: expr3

AST:

nnkIfExpr( nnkElifExpr(cond1, expr1), nnkElifExpr(cond2, expr2), nnkElseExpr(expr3) )

Documentation Comments

Double-hash (##) comments in the code actually have their own format, using strVal to get and set the comment text. Single-hash (#) comments are ignored.

Concrete syntax:

stmt1

AST:

nnkCommentStmt() stmt1 nnkCommentStmt()

Pragmas

One of Nim's cool features is pragmas, which allow fine-tuning of various aspects of the language. They come in all types, such as adorning procs and objects, but the standalone emit pragma shows the basics with the AST.

Concrete syntax:

{.emit: "#include <stdio.h>".}

AST:

nnkPragma( nnkExprColonExpr( nnkIdent("emit"), nnkStrLit("#include <stdio.h>") ) )

As many nnkIdent appear as there are pragmas between {..}. Note that the declaration of new pragmas is essentially the same:

Concrete syntax:

{.pragma: cdeclRename, cdecl.}

AST:

nnkPragma( nnkExprColonExpr( nnkIdent("pragma"), nnkIdent("cdeclRename") ), nnkIdent("cdecl") )

Statements

If statement

The representation of the if statement is subtle, but easy to traverse. If there is no else branch, no nnkElse child exists.

Concrete syntax:

if cond1: stmt1 elif cond2: stmt2 elif cond3: stmt3 else: stmt4

AST:

nnkIfStmt( nnkElifBranch(cond1, stmt1), nnkElifBranch(cond2, stmt2), nnkElifBranch(cond3, stmt3), nnkElse(stmt4) )

When statement

Like the if statement, but the root has the kind nnkWhenStmt.

Assignment

Concrete syntax:

x = 42

AST:

nnkAsgn(nnkIdent("x"), nnkIntLit(42))

This is not the syntax for assignment when combined with var, let, or const.

Statement list

Concrete syntax:

stmt1 stmt2 stmt3

AST:

nnkStmtList(stmt1, stmt2, stmt3)

Case statement

Concrete syntax:

case expr1 of expr2, expr3..expr4: stmt1 of expr5: stmt2 elif cond1: stmt3 else: stmt4

AST:

nnkCaseStmt( expr1, nnkOfBranch(expr2, nnkRange(expr3, expr4), stmt1), nnkOfBranch(expr5, stmt2), nnkElifBranch(cond1, stmt3), nnkElse(stmt4) )

The nnkElifBranch and nnkElse parts may be missing.

While statement

Concrete syntax:

while expr1: stmt1

AST:

nnkWhileStmt(expr1, stmt1)

For statement

Concrete syntax:

for ident1, ident2 in expr1: stmt1

AST:

nnkForStmt(ident1, ident2, expr1, stmt1)

Try statement

Concrete syntax:

try: stmt1 except e1, e2: stmt2 except e3: stmt3 except: stmt4 finally: stmt5

AST:

nnkTryStmt( stmt1, nnkExceptBranch(e1, e2, stmt2), nnkExceptBranch(e3, stmt3), nnkExceptBranch(stmt4), nnkFinally(stmt5) )

Return statement

Concrete syntax:

return expr1

AST:

nnkReturnStmt(expr1)

Yield statement

Like return, but with nnkYieldStmt kind.

nnkYieldStmt(expr1)

Discard statement

Like return, but with nnkDiscardStmt kind.

nnkDiscardStmt(expr1)

Continue statement

Concrete syntax:

continue

AST:

nnkContinueStmt()

Break statement

Concrete syntax:

break otherLocation

AST:

nnkBreakStmt(nnkIdent("otherLocation"))

If break is used without a jump-to location, nnkEmpty replaces nnkIdent.

Block statement

Concrete syntax:

block name:

AST:

nnkBlockStmt(nnkIdent("name"), nnkStmtList(...))

A block doesn't need an name, in which case nnkEmpty is used.

Asm statement

Concrete syntax:

asm """ some asm """

AST:

nnkAsmStmt( nnkEmpty(), nnkTripleStrLit("some asm"), )

Import section

Nim's import statement actually takes different variations depending on what keywords are present. Let's start with the simplest form.

Concrete syntax:

import std/math

AST:

nnkImportStmt(nnkIdent("math"))

With except, we get nnkImportExceptStmt.

Concrete syntax:

import std/math except pow

AST:

nnkImportExceptStmt(nnkIdent("math"),nnkIdent("pow"))

Note that import std/math as m does not use a different node; rather, we use nnkImportStmt with as as an infix operator.

Concrete syntax:

import std/strutils as su

AST:

nnkImportStmt( nnkInfix( nnkIdent("as"), nnkIdent("strutils"), nnkIdent("su") ) )

From statement

If we use from ... import, the result is different, too.

Concrete syntax:

from std/math import pow

AST:

nnkFromStmt(nnkIdent("math"), nnkIdent("pow"))

Using from std/math as m import pow works identically to the as modifier with the import statement, but wrapped in nnkFromStmt.

Export statement

When you are making an imported module accessible by modules that import yours, the export syntax is pretty straightforward.

Concrete syntax:

export unsigned

AST:

nnkExportStmt(nnkIdent("unsigned"))

Similar to the import statement, the AST is different for export ... except.

Concrete syntax:

export math except pow

AST:

nnkExportExceptStmt(nnkIdent("math"),nnkIdent("pow"))

Include statement

Like a plain import statement but with nnkIncludeStmt.

Concrete syntax:

include blocks

AST:

nnkIncludeStmt(nnkIdent("blocks"))

Var section

Concrete syntax:

var a = 3

AST:

nnkVarSection( nnkIdentDefs( nnkIdent("a"), nnkEmpty(), nnkIntLit(3), ) )

Note that either the second or third (or both) parameters above must exist, as the compiler needs to know the type somehow (which it can infer from the given assignment).

This is not the same AST for all uses of var. See Procedure declaration for details.

Let section

This is equivalent to var, but with nnkLetSection rather than nnkVarSection.

Concrete syntax:

let a = 3

AST:

nnkLetSection( nnkIdentDefs( nnkIdent("a"), nnkEmpty(), nnkIntLit(3), ) )

Const section

Concrete syntax:

const a = 3

AST:

nnkConstSection( nnkConstDef( nnkIdent("a"), nnkEmpty(), nnkIntLit(3), ) )

Type section

Starting with the simplest case, a type section appears much like var and const.

Concrete syntax:

type A = int

AST:

nnkTypeSection( nnkTypeDef( nnkIdent("A"), nnkEmpty(), nnkIdent("int") ) )

Declaring distinct types is similar, with the last nnkIdent wrapped in nnkDistinctTy.

Concrete syntax:

type MyInt = distinct int

AST:

nnkTypeDef( nnkIdent("MyInt"), nnkEmpty(), nnkDistinctTy( nnkIdent("int") ) )

If a type section uses generic parameters, they are treated here:

Concrete syntax:

type A[T] = expr1

AST:

nnkTypeSection( nnkTypeDef( nnkIdent("A"), nnkGenericParams( nnkIdentDefs( nnkIdent("T"), nnkEmpty(),

    nnkEmpty(),
  )
)
expr1,

) )

Note that not all nnkTypeDef utilize nnkIdent as their parameter. One of the most common uses of type declarations is to work with objects.

Concrete syntax:

type IO = object of RootObj

AST:

nnkTypeDef( nnkIdent("IO"), nnkEmpty(), nnkObjectTy( nnkEmpty(), nnkOfInherit( nnkIdent("RootObj") ), nnkEmpty() ) )

Nim's object syntax is rich. Let's take a look at an involved example in its entirety to see some of the complexities.

Concrete syntax:

type Obj[T] {.inheritable.} = object name: string case isFat: bool of true: m: array[100_000, T] of false: m: array[10, T]

AST:

nnkPragmaExpr( nnkIdent("Obj"), nnkPragma(nnkIdent("inheritable")) ), nnkGenericParams( nnkIdentDefs( nnkIdent("T"), nnkEmpty(), nnkEmpty()) ), nnkObjectTy( nnkEmpty(), nnkEmpty(), nnkRecList( nnkIdentDefs( nnkIdent("name"), nnkIdent("string"), nnkEmpty() ), nnkRecCase( nnkIdentDefs( nnkIdent("isFat"), nnkIdent("bool"), nnkEmpty() ), nnkOfBranch( nnkIdent("true"), nnkRecList( nnkIdentDefs( nnkIdent("m"), nnkBracketExpr( nnkIdent("array"), nnkIntLit(100000), nnkIdent("T") ), nnkEmpty() ) ), nnkOfBranch( nnkIdent("false"), nnkRecList( nnkIdentDefs( nnkIdent("m"), nnkBracketExpr( nnkIdent("array"), nnkIntLit(10), nnkIdent("T") ), nnkEmpty() ) ) ) ) ) )

Using an enum is similar to using an object.

Concrete syntax:

type X = enum First

AST:

nnkEnumTy( nnkEmpty(), nnkIdent("First") )

The usage of concept (experimental) is similar to objects.

Concrete syntax:

type Con = concept x,y,z (x & y & z) is string

AST:

nnkTypeClassTy( nnkArgList(

)

)

Static types, like static[int], use nnkIdent wrapped in nnkStaticTy.

Concrete syntax:

type A[T: static[int]] = object

AST:

nnkIdentDefs( nnkIdent("T"), nnkStaticTy( nnkIdent("int") ), nnkEmpty() )

In general, declaring types mirrors this syntax (i.e., nnkStaticTy for static, etc.). Examples follow (exceptions marked by *):

Nim type Corresponding AST
static nnkStaticTy
tuple nnkTupleTy
var nnkVarTy
ptr nnkPtrTy
ref nnkRefTy
distinct nnkDistinctTy
enum nnkEnumTy
concept nnkTypeClassTy*
array nnkBracketExpr(nnkIdent("array"),...*
proc nnkProcTy
iterator nnkIteratorTy
object nnkObjectTy

Take special care when declaring types as proc. The behavior is similar to Procedure declaration, below, but does not treat nnkGenericParams. Generic parameters are treated in the type, not the proc itself.

Concrete syntax:

type MyProc[T] = proc(x: T) {.nimcall.}

AST:

nnkTypeDef( nnkIdent("MyProc"), nnkGenericParams(

) nnkProcTy( nnkFormalParams(

),
nnkPragma(nnkIdent("nimcall"))

) )

The same syntax applies to iterator (with nnkIteratorTy), but does not apply to converter or template.

Type class versions of these nodes generally share the same node kind but without any child nodes. The tuple type class is represented by nnkTupleClassTy, while a proc or iterator type class with pragmas has an nnkEmpty node in place of the nnkFormalParams node of a concrete proc or iterator type node.

type TypeClass = proc {.nimcall.} | ref | tuple

AST:

nnkTypeDef( nnkIdent("TypeClass"), nnkEmpty(), nnkInfix( nnkIdent("|"), nnkProcTy( nnkEmpty(), nnkPragma(nnkIdent("nimcall")) ), nnkInfix( nnkIdent("|"), nnkRefTy(), nnkTupleClassTy() ) ) )

Mixin statement

Concrete syntax:

mixin x

AST:

nnkMixinStmt(nnkIdent("x"))

Bind statement

Concrete syntax:

bind x

AST:

nnkBindStmt(nnkIdent("x"))

Procedure declaration

Let's take a look at a procedure with a lot of interesting aspects to get a feel for how procedure calls are broken down.

Concrete syntax:

proc hello*[T: SomeInteger](x: int = 3, y: float32): int {.inline.} = discard

AST:

nnkProcDef( nnkPostfix(nnkIdent("*"), nnkIdent("hello")), nnkEmpty(), nnkGenericParams( nnkIdentDefs( nnkIdent("T"), nnkIdent("SomeInteger"), nnkEmpty() ) ), nnkFormalParams( nnkIdent("int"), nnkIdentDefs( nnkIdent("x"), nnkIdent("int"), nnkIntLit(3) ), nnkIdentDefs( nnkIdent("y"), nnkIdent("float32"), nnkEmpty() ) ), nnkPragma(nnkIdent("inline")), nnkEmpty(), nnkStmtList(nnkDiscardStmt(nnkEmpty())) )

There is another consideration. Nim has flexible type identification for its procs. Even though proc(a: int, b: int) and proc(a, b: int) are equivalent in the code, the AST is a little different for the latter.

Concrete syntax:

proc(a, b: int)

AST:

nnkFormalParams( nnkEmpty(), nnkIdentDefs( nnkIdent("a"), nnkIdent("b"), nnkIdent("int"), nnkEmpty(), ) ),

When a procedure uses the special var type return variable, the result is different from that of a var section.

Concrete syntax:

proc hello(): var int

AST:

nnkFormalParams( nnkVarTy( nnkIdent("int") ) )

Iterator declaration

The syntax for iterators is similar to procs, but with nnkIteratorDef replacing nnkProcDef.

Concrete syntax:

iterator nonsense[T](x: seq[T]): float {.closure.} = ...

AST:

nnkIteratorDef( nnkIdent("nonsense"), nnkEmpty(), ... )

Converter declaration

A converter is similar to a proc.

Concrete syntax:

converter toBool(x: float): bool

AST:

nnkConverterDef( nnkIdent("toBool"),

)

Template declaration

Templates (as well as macros, as we'll see) have a slightly expanded AST when compared to procs and iterators. The reason for this is term-rewriting macros. Notice the nnkEmpty() as the second argument to nnkProcDef and nnkIteratorDef above? That's where the term-rewriting macros go.

Concrete syntax:

template optOpt{expr1}(a: int): int

AST:

nnkTemplateDef( nnkIdent("optOpt"), nnkStmtList( expr1 ),

)

If the template does not have types for its parameters, the type identifiers inside nnkFormalParams just becomes nnkEmpty.

Macro declaration

Macros behave like templates, but nnkTemplateDef is replaced with nnkMacroDef.

Hidden Standard Conversion

var f: float = 1

The type of "f" is float but the type of "1" is actually int. Inserting int into a float is a type error. Nim inserts the nnkHiddenStdConv node around the nnkIntLit node so that the new node has the correct type of float. This works for any auto converted nodes and makes the conversion explicit.

Special node kinds

There are several node kinds that are used for semantic checking or code generation. These are accessible from this module, but should not be used. Other node kinds are especially designed to make AST manipulations easier. These are explained here.

To be written.

Types

NimIdent {....deprecated.} = object of RootObj

Deprecated

Represents a Nim identifier in the AST. Note: This is only rarely useful, for identifier construction from a string use ident"abc".Source Edit

NimNodeKind = enum nnkNone, nnkEmpty, nnkIdent, nnkSym, nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit, nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit, nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit, nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit, nnkTripleStrLit, nnkNilLit, nnkComesFrom, nnkDotCall, nnkCommand, nnkCall, nnkCallStrLit, nnkInfix, nnkPrefix, nnkPostfix, nnkHiddenCallConv, nnkExprEqExpr, nnkExprColonExpr, nnkIdentDefs, nnkVarTuple, nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr, nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange, nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr, nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted, nnkTableConstr, nnkBind, nnkClosedSymChoice, nnkOpenSymChoice, nnkHiddenStdConv, nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr, nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv, nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange, nnkStringToCString, nnkCStringToString, nnkAsgn, nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit, nnkImportAs, nnkProcDef, nnkMethodDef, nnkConverterDef, nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch, nnkElifBranch, nnkExceptBranch, nnkElse, nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt, nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt, nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection, nnkConstDef, nnkTypeDef, nnkYieldStmt, nnkDefer, nnkTryStmt, nnkFinally, nnkRaiseStmt, nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt, nnkDiscardStmt, nnkStmtList, nnkImportStmt, nnkImportExceptStmt, nnkExportStmt, nnkExportExceptStmt, nnkFromStmt, nnkIncludeStmt, nnkBindStmt, nnkMixinStmt, nnkUsingStmt, nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr, nnkStmtListType, nnkBlockType, nnkWith, nnkWithout, nnkTypeOfExpr, nnkObjectTy, nnkTupleTy, nnkTupleClassTy, nnkTypeClassTy, nnkStaticTy, nnkRecList, nnkRecCase, nnkRecWhen, nnkRefTy, nnkPtrTy, nnkVarTy, nnkConstTy, nnkOutTy, nnkDistinctTy, nnkProcTy, nnkIteratorTy, nnkSinkAsgn, nnkEnumTy, nnkEnumFieldDef, nnkArgList, nnkPattern, nnkHiddenTryStmt, nnkClosure, nnkGotoState, nnkState, nnkBreakState, nnkFuncDef, nnkTupleConstr, nnkError, nnkModuleRef, nnkReplayAction, nnkNilRodNode, nnkOpenSym

Source Edit

NimSym {....deprecated.} = ref NimSymObj

Deprecated

Represents a Nim symbol in the compiler; a symbol is a looked-up ident.Source Edit

NimSymKind = enum nskUnknown, nskConditional, nskDynLib, nskParam, nskGenericParam, nskTemp, nskModule, nskType, nskVar, nskLet, nskConst, nskResult, nskProc, nskFunc, nskMethod, nskIterator, nskConverter, nskMacro, nskTemplate, nskField, nskEnumField, nskForVar, nskLabel, nskStub

Source Edit

NimTypeKind = enum ntyNone, ntyBool, ntyChar, ntyEmpty, ntyAlias, ntyNil, ntyExpr, ntyStmt, ntyTypeDesc, ntyGenericInvocation, ntyGenericBody, ntyGenericInst, ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal, ntyArray, ntyObject, ntyTuple, ntySet, ntyRange, ntyPtr, ntyRef, ntyVar, ntySequence, ntyProc, ntyPointer, ntyOpenArray, ntyString, ntyCString, ntyForward, ntyInt, ntyInt8, ntyInt16, ntyInt32, ntyInt64, ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128, ntyUInt, ntyUInt8, ntyUInt16, ntyUInt32, ntyUInt64, ntyUnused0, ntyUnused1, ntyUnused2, ntyVarargs, ntyUncheckedArray, ntyError, ntyBuiltinTypeClass, ntyUserTypeClass, ntyUserTypeClassInst, ntyCompositeTypeClass, ntyInferred, ntyAnd, ntyOr, ntyNot, ntyAnything, ntyStatic, ntyFromExpr, ntyOptDeprecated, ntyVoid

Source Edit

Consts

CallNodes = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand, nnkCallStrLit, nnkHiddenCallConv}

Source Edit

nnkCallKinds = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand, nnkCallStrLit, nnkHiddenCallConv}

Source Edit

RoutineNodes = {nnkProcDef, nnkFuncDef, nnkMethodDef, nnkDo, nnkLambda, nnkIteratorDef, nnkTemplateDef, nnkConverterDef, nnkMacroDef}

Source Edit

Procs

proc $(arg: LineInfo): string {....raises: [], tags: [], forbids: [].}

Return a string representation in the form filepath(line, column).Source Edit

proc $(i: NimIdent): string {.magic: "NStrVal", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; Use 'strVal' instead.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; Use 'strVal' instead.

Converts a Nim identifier to a string.Source Edit

proc $(node: NimNode): string {....raises: [], tags: [], forbids: [].}

Get the string of an identifier node.Source Edit

proc $(s: NimSym): string {.magic: "NStrVal", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; Use 'strVal' instead.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; Use 'strVal' instead.

Converts a Nim symbol to a string.Source Edit

proc ==(a, b: NimIdent): bool {.magic: "EqIdent", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; Use '==' on 'NimNode' instead.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; Use '==' on 'NimNode' instead.

Compares two Nim identifiers.Source Edit

proc ==(a, b: NimNode): bool {.magic: "EqNimrodNode", noSideEffect, ...raises: [], tags: [], forbids: [].}

Compare two Nim nodes. Return true if nodes are structurally equivalent. This means two independently created nodes can be equal.Source Edit

proc ==(a, b: NimSym): bool {.magic: "EqNimrodNode", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; Use '==(NimNode, NimNode)' instead.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; Use '==(NimNode, NimNode)' instead.

Compares two Nim symbols.Source Edit

proc [](n: NimNode; i: int): NimNode {.magic: "NChild", noSideEffect, ...raises: [], tags: [], forbids: [].}

Get n's i'th child.Source Edit

proc []=(n: NimNode; i: int; child: NimNode) {.magic: "NSetChild", noSideEffect, ...raises: [], tags: [], forbids: [].}

Set n's i'th child to child.Source Edit

proc add(father, child: NimNode): NimNode {.magic: "NAdd", discardable, noSideEffect, ...raises: [], tags: [], forbids: [].}

Adds the child to the father node. Returns the father node so that calls can be nested.Source Edit

proc add(father: NimNode; children: varargs[NimNode]): NimNode {. magic: "NAddMultiple", discardable, noSideEffect, ...raises: [], tags: [], forbids: [].}

Adds each child of children to the father node. Returns the father node so that calls can be nested.Source Edit

proc addIdentIfAbsent(dest: NimNode; ident: string) {....raises: [], tags: [], forbids: [].}

Add ident to dest if it is not present. This is intended for use with pragmas.Source Edit

proc addPragma(someProc, pragma: NimNode) {....raises: [], tags: [], forbids: [].}

Adds pragma to routine definition.Source Edit

proc basename(a: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Pull an identifier from prefix/postfix expressions.Source Edit

proc bindSym(ident: string | NimNode; rule: BindSymRule = brClosed): NimNode {. magic: "NBindSym", noSideEffect, ...raises: [], tags: [], forbids: [].}

Creates a node that binds ident to a symbol node. The bound symbol may be an overloaded symbol. if ident is a NimNode, it must have nnkIdent kind. If rule == brClosed either an nnkClosedSymChoice tree is returned or nnkSym if the symbol is not ambiguous. If rule == brOpen either an nnkOpenSymChoice tree is returned or nnkSym if the symbol is not ambiguous. If rule == brForceOpen always an nnkOpenSymChoice tree is returned even if the symbol is not ambiguous.

See the manual for more details.

Source Edit

proc body(someProc: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Source Edit

proc body=(someProc: NimNode; val: NimNode) {....raises: [], tags: [], forbids: [].}

Source Edit

proc callsite(): NimNode {.magic: "NCallSite", ...gcsafe, deprecated: "Deprecated since v0.18.1; use varargs[untyped] in the macro prototype instead", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since v0.18.1; use `varargs[untyped]` in the macro prototype instead

Returns the AST of the invocation expression that invoked this macro.Source Edit

proc copyChildrenTo(src, dest: NimNode) {....raises: [], tags: [], forbids: [].}

Copy all children from src to dest.Source Edit

proc copyLineInfo(arg: NimNode; info: NimNode) {.magic: "NLineInfo", noSideEffect, ...raises: [], tags: [], forbids: [].}

Copy lineinfo from info.Source Edit

proc copyNimNode(n: NimNode): NimNode {.magic: "NCopyNimNode", noSideEffect, ...raises: [], tags: [], forbids: [].}

Creates a new AST node by copying the node n. Note that unlike copyNimTree, child nodes of n are not copied.

Example:

macro foo(x: typed) = var s = copyNimNode(x) doAssert s.len == 0 doAssert s.kind == nnkStmtList

foo: let x = 12 echo x

Source Edit

proc copyNimTree(n: NimNode): NimNode {.magic: "NCopyNimTree", noSideEffect, ...raises: [], tags: [], forbids: [].}

Creates a new AST node by recursively copying the node n. Note that unlike copyNimNode, this copies n, the children of n, etc.

Example:

macro foo(x: typed) = var s = copyNimTree(x) doAssert s.len == 2 doAssert s.kind == nnkStmtList

foo: let x = 12 echo x

Source Edit

proc del(father: NimNode; idx = 0; n = 1) {.magic: "NDel", noSideEffect, ...raises: [], tags: [], forbids: [].}

Deletes n children of father starting at index idx.Source Edit

proc eqIdent(a: NimNode; b: NimNode): bool {.magic: "EqIdent", noSideEffect, ...raises: [], tags: [], forbids: [].}

Style insensitive comparison. a and b can be an identifier or a symbol. Both may be wrapped in an export marker (nnkPostfix) or quoted with backticks (nnkAccQuoted), these nodes will be unwrapped.Source Edit

proc eqIdent(a: NimNode; b: string): bool {.magic: "EqIdent", noSideEffect, ...raises: [], tags: [], forbids: [].}

Style insensitive comparison. a can be an identifier or a symbol. a may be wrapped in an export marker (nnkPostfix) or quoted with backticks (nnkAccQuoted), these nodes will be unwrapped.Source Edit

proc eqIdent(a: string; b: NimNode): bool {.magic: "EqIdent", noSideEffect, ...raises: [], tags: [], forbids: [].}

Style insensitive comparison. b can be an identifier or a symbol. b may be wrapped in an export marker (nnkPostfix) or quoted with backticks (nnkAccQuoted), these nodes will be unwrapped.Source Edit

proc eqIdent(a: string; b: string): bool {.magic: "EqIdent", noSideEffect, ...raises: [], tags: [], forbids: [].}

Style insensitive comparison.Source Edit

proc error(msg: string; n: NimNode = nil) {.magic: "NError", ...gcsafe, noreturn, ...raises: [], tags: [], forbids: [].}

Writes an error message at compile time. The optional n: NimNode parameter is used as the source for file and line number information in the compilation error message.Source Edit

proc expectIdent(n: NimNode; name: string) {....raises: [], tags: [], forbids: [].}

Check that eqIdent(n,name) holds true. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check the AST that is passed to them.Source Edit

proc expectKind(n: NimNode; k: NimNodeKind) {....raises: [], tags: [], forbids: [].}

Checks that n is of kind k. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check the AST that is passed to them.Source Edit

proc expectKind(n: NimNode; k: set[NimNodeKind]) {....raises: [], tags: [], forbids: [].}

Checks that n is of kind k. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check the AST that is passed to them.Source Edit

proc expectLen(n: NimNode; len: int) {....raises: [], tags: [], forbids: [].}

Checks that n has exactly len children. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check its number of arguments.Source Edit

proc expectLen(n: NimNode; min, max: int) {....raises: [], tags: [], forbids: [].}

Checks that n has a number of children in the range min..max. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check its number of arguments.Source Edit

proc expectMinLen(n: NimNode; min: int) {....raises: [], tags: [], forbids: [].}

Checks that n has at least min children. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check its number of arguments.Source Edit

proc floatVal(n: NimNode): BiggestFloat {.magic: "NFloatVal", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns a float from any floating point literal.Source Edit

proc genSym(kind: NimSymKind = nskLet; ident = ""): NimNode {.magic: "NGenSym", noSideEffect, ...raises: [], tags: [], forbids: [].}

Generates a fresh symbol that is guaranteed to be unique. The symbol needs to occur in a declaration context.Source Edit

proc getAlign(arg: NimNode): int {.magic: "NSizeOf", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the same result as system.alignof if the alignment is known by the Nim compiler. It works on NimNode for use in macro context. Returns a negative value if the Nim compiler does not know the alignment.Source Edit

proc getAst(macroOrTemplate: untyped): NimNode {.magic: "ExpandToAst", noSideEffect, ...raises: [], tags: [], forbids: [].}

Obtains the AST nodes returned from a macro or template invocation. See also genasts.genAst. Example:

macro FooMacro() = var ast = getAst(BarTemplate())

Source Edit

proc getImpl(s: NimSym): NimNode {.magic: "GetImpl", noSideEffect, ...deprecated: "use getImpl: NimNode -> NimNode instead", raises: [], tags: [], forbids: [].}

Deprecated: use `getImpl: NimNode -> NimNode` instead

Source Edit

proc getImpl(symbol: NimNode): NimNode {.magic: "GetImpl", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns a copy of the declaration of a symbol or nil.Source Edit

proc getImplTransformed(symbol: NimNode): NimNode {.magic: "GetImplTransf", noSideEffect, ...raises: [], tags: [], forbids: [].}

For a typed proc returns the AST after transformation pass; this is useful for debugging how the compiler transforms code (e.g.: defer, for) but note that code transformations are implementation dependent and subject to change. See an example in tests/macros/tmacros_various.nim.Source Edit

proc getOffset(arg: NimNode): int {.magic: "NSizeOf", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the same result as system.offsetof if the offset is known by the Nim compiler. It expects a resolved symbol node from a field of a type. Therefore it only requires one argument instead of two. Returns a negative value if the Nim compiler does not know the offset.Source Edit

proc getProjectPath(): string {....raises: [], tags: [], forbids: [].}

Returns the path to the currently compiling project.

This is not to be confused with system.currentSourcePath which returns the path of the source file containing that template call.

For example, assume a dir1/foo.nim that imports a dir2/bar.nim, have the bar.nim print out both getProjectPath and currentSourcePath outputs.

Now when foo.nim is compiled, the getProjectPath from bar.nim will return the dir1/ path, while the currentSourcePath will return the path to the bar.nim source file.

Now when bar.nim is compiled directly, the getProjectPath will now return the dir2/ path, and the currentSourcePath will still return the same path, the path to the bar.nim source file.

The path returned by this proc is set at compile time.

See also:

proc getSize(arg: NimNode): int {.magic: "NSizeOf", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the same result as system.sizeof if the size is known by the Nim compiler. Returns a negative value if the Nim compiler does not know the size.Source Edit

proc getType(n: NimNode): NimNode {.magic: "NGetType", noSideEffect, ...raises: [], tags: [], forbids: [].}

With 'getType' you can access the node's type. A Nim type is mapped to a Nim AST too, so it's slightly confusing but it means the same API can be used to traverse types. Recursive types are flattened for you so there is no danger of infinite recursions during traversal. To resolve recursive types, you have to call 'getType' again. To see what kind of type it is, call typeKind on getType's result.Source Edit

proc getType(n: typedesc): NimNode {.magic: "NGetType", noSideEffect, ...raises: [], tags: [], forbids: [].}

Version of getType which takes a typedesc.Source Edit

proc getTypeImpl(n: NimNode): NimNode {.magic: "NGetType", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the type of a node in a form matching the implementation of the type. Any intermediate aliases are expanded to arrive at the final type implementation. You can instead use getImpl on a symbol if you want to find the intermediate aliases.

Example:

type Vec[N: static[int], T] = object arr: array[N, T] Vec4[T] = Vec[4, T] Vec4f = Vec4[float32] var a: Vec4f var b: Vec4[float32] var c: Vec[4, float32] macro dumpTypeImpl(x: typed): untyped = newLit(x.getTypeImpl.repr) let t = """ object arr: array[0 .. 3, float32]""" doAssert(dumpTypeImpl(a) == t) doAssert(dumpTypeImpl(b) == t) doAssert(dumpTypeImpl(c) == t)

Source Edit

proc getTypeImpl(n: typedesc): NimNode {.magic: "NGetType", noSideEffect, ...raises: [], tags: [], forbids: [].}

Version of getTypeImpl which takes a typedesc.Source Edit

proc getTypeInst(n: NimNode): NimNode {.magic: "NGetType", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the type of a node in a form matching the way the type instance was declared in the code.

Example:

type Vec[N: static[int], T] = object arr: array[N, T] Vec4[T] = Vec[4, T] Vec4f = Vec4[float32] var a: Vec4f var b: Vec4[float32] var c: Vec[4, float32] macro dumpTypeInst(x: typed): untyped = newLit(x.getTypeInst.repr) doAssert(dumpTypeInst(a) == "Vec4f") doAssert(dumpTypeInst(b) == "Vec4[float32]") doAssert(dumpTypeInst(c) == "Vec[4, float32]")

Source Edit

proc getTypeInst(n: typedesc): NimNode {.magic: "NGetType", noSideEffect, ...raises: [], tags: [], forbids: [].}

Version of getTypeInst which takes a typedesc.Source Edit

proc hint(msg: string; n: NimNode = nil) {.magic: "NHint", ...gcsafe, raises: [], tags: [], forbids: [].}

Writes a hint message at compile time.Source Edit

proc ident(n: NimNode): NimIdent {.magic: "NIdent", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.

Source Edit

proc ident(name: string): NimNode {.magic: "StrToIdent", noSideEffect, ...raises: [], tags: [], forbids: [].}

Create a new ident node from a string.Source Edit

proc ident=(n: NimNode; val: NimIdent) {.magic: "NSetIdent", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; Generate a new 'NimNode' with 'ident(string)' instead.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; Generate a new 'NimNode' with 'ident(string)' instead.

Source Edit

proc internalErrorFlag(): string {.magic: "NError", noSideEffect, ...raises: [], tags: [], forbids: [].}

Some builtins set an error flag. This is then turned into a proper exception. Note: Ordinary application code should not call this.Source Edit

proc intVal(n: NimNode): BiggestInt {.magic: "NIntVal", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns an integer value from any integer literal or enum field symbol.Source Edit

proc isExported(n: NimNode): bool {.noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns whether the symbol is exported or not.Source Edit

proc isInstantiationOf(instanceProcSym, genProcSym: NimNode): bool {. magic: "SymIsInstantiationOf", noSideEffect, ...raises: [], tags: [], forbids: [].}

Checks if a proc symbol is an instance of the generic proc symbol. Useful to check proc symbols against generic symbols returned by bindSym.Source Edit

proc kind(n: NimNode): NimNodeKind {.magic: "NKind", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the kind of the node n.Source Edit

proc last(node: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Return the last item in nodes children. Same as node[^1].Source Edit

proc len(n: NimNode): int {.magic: "NLen", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the number of children of n.Source Edit

proc lineInfo(arg: NimNode): string {....raises: [], tags: [], forbids: [].}

Return line info in the form filepath(line, column).Source Edit

proc lineInfoObj(n: NimNode): LineInfo {....raises: [], tags: [], forbids: [].}

Returns LineInfo of n, using absolute path for filename.Source Edit

proc lispRepr(n: NimNode; indented = false): string {....gcsafe, raises: [], tags: [], forbids: [].}

Convert the AST n to a human-readable lisp-like string.

See also repr, treeRepr, and astGenRepr.

Source Edit

proc nestList(op: NimNode; pack: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Nests the list pack into a tree of call expressions: [a, b, c] is transformed into op(a, op(c, d)). This is also known as fold expression.Source Edit

proc nestList(op: NimNode; pack: NimNode; init: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Nests the list pack into a tree of call expressions: [a, b, c] is transformed into op(a, op(c, d)). This is also known as fold expression.Source Edit

proc newBlockStmt(label, body: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Create a new block statement with label.Source Edit

proc newCall(theProc: NimIdent; args: varargs[NimNode]): NimNode {....deprecated: "Deprecated since v0.18.1; use 'newCall(string, ...)' or 'newCall(NimNode, ...)' instead", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since v0.18.1; use 'newCall(string, ...)' or 'newCall(NimNode, ...)' instead

Produces a new call node. theProc is the proc that is called with the arguments args[0..].Source Edit

proc newCall(theProc: NimNode; args: varargs[NimNode]): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new call node. theProc is the proc that is called with the arguments args[0..].Source Edit

proc newCall(theProc: string; args: varargs[NimNode]): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new call node. theProc is the proc that is called with the arguments args[0..].Source Edit

proc newColonExpr(a, b: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Create new colon expression. newColonExpr(a, b) -> a: b Source Edit

proc newDotExpr(a, b: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Create new dot expression. a.dot(b) -> a.b Source Edit

proc newEmptyNode(): NimNode {.noSideEffect, ...raises: [], tags: [], forbids: [].}

Create a new empty node.Source Edit

proc newEnum(name: NimNode; fields: openArray[NimNode]; public, pure: bool): NimNode {. ...raises: [], tags: [], forbids: [].}

Creates a new enum. name must be an ident. Fields are allowed to be either idents or EnumFieldDef:

newEnum( name = ident("Colors"), fields = [ident("Blue"), ident("Red")], public = true, pure = false)

Source Edit

proc newIdentDefs(name, kind: NimNode; default = newEmptyNode()): NimNode {. ...raises: [], tags: [], forbids: [].}

Creates a new nnkIdentDefs node of a specific kind and value.

nnkIdentDefs need to have at least three children, but they can have more: first comes a list of identifiers followed by a type and value nodes. This helper proc creates a three node subtree, the first subnode being a single identifier name. Both the kind node and default (value) nodes may be empty depending on where the nnkIdentDefs appears: tuple or object definitions will have an empty default node, let or var blocks may have an empty kind node if the identifier is being assigned a value. Example:

var varSection = newNimNode(nnkVarSection).add( newIdentDefs(ident("a"), ident("string")), newIdentDefs(ident("b"), newEmptyNode(), newLit(3)))

If you need to create multiple identifiers you need to use the lower level newNimNode:

result = newNimNode(nnkIdentDefs).add( ident("a"), ident("b"), ident("c"), ident("string"), newStrLitNode("Hello"))

Source Edit

proc newIdentNode(i: NimIdent): NimNode {....deprecated: "use ident(string)", raises: [], tags: [], forbids: [].}

Deprecated: use ident(string)

Creates an identifier node from i.Source Edit

proc newIdentNode(i: string): NimNode {.magic: "StrToIdent", noSideEffect, ...raises: [], tags: [], forbids: [].}

Creates an identifier node from i. It is simply an alias for ident(string). Use that, it's shorter.Source Edit

proc newIfStmt(branches: varargs[tuple[cond, body: NimNode]]): NimNode {. ...raises: [], tags: [], forbids: [].}

Constructor for if statements.

newIfStmt( (Ident, StmtList), ... )

Source Edit

proc newLit(b: bool): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new boolean literal node.Source Edit

proc newLit(c: char): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new character literal node.Source Edit

proc newLit(i: int): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new integer literal node.Source Edit

proc newLit(i: int8): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new integer literal node.Source Edit

proc newLit(i: int16): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new integer literal node.Source Edit

proc newLit(i: int32): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new integer literal node.Source Edit

proc newLit(i: int64): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new integer literal node.Source Edit

proc newLit(i: uint): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new unsigned integer literal node.Source Edit

proc newLit(i: uint8): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new unsigned integer literal node.Source Edit

proc newLit(i: uint16): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new unsigned integer literal node.Source Edit

proc newLit(i: uint32): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new unsigned integer literal node.Source Edit

proc newLit(i: uint64): NimNode {....raises: [], tags: [], forbids: [].}

Produces a new unsigned integer literal node.Source Edit

proc newNilLit(): NimNode {....raises: [], tags: [], forbids: [].}

New nil literal shortcut.Source Edit

proc newNimNode(kind: NimNodeKind; lineInfoFrom: NimNode = nil): NimNode {. magic: "NNewNimNode", noSideEffect, ...raises: [], tags: [], forbids: [].}

Creates a new AST node of the specified kind.

The lineInfoFrom parameter is used for line information when the produced code crashes. You should ensure that it is set to a node that you are transforming.

Source Edit

proc newPar(exprs: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Create a new parentheses-enclosed expression.Source Edit

proc newPar(exprs: varargs[NimNode]): NimNode {....deprecated: "don't use newPar/nnkPar to construct tuple expressions; use nnkTupleConstr instead", raises: [], tags: [], forbids: [].}

Deprecated: don't use newPar/nnkPar to construct tuple expressions; use nnkTupleConstr instead

Create a new parentheses-enclosed expression.Source Edit

proc newProc(name = newEmptyNode(); params: openArray[NimNode] = [newEmptyNode()]; body: NimNode = newStmtList(); procType = nnkProcDef; pragmas: NimNode = newEmptyNode()): NimNode {....raises: [], tags: [], forbids: [].}

Shortcut for creating a new proc.

The params array must start with the return type of the proc, followed by a list of IdentDefs which specify the params.

Source Edit

proc newStrLitNode(s: string): NimNode {.noSideEffect, ...raises: [], tags: [], forbids: [].}

Creates a string literal node from s.Source Edit

proc nodeID(n: NimNode): int {.magic: "NodeId", ...raises: [], tags: [], forbids: [].}

Returns the id of n, when the compiler has been compiled with the flag -d:useNodeids, otherwise returns -1. This proc is for the purpose to debug the compiler only.Source Edit

proc owner(sym: NimNode): NimNode {.magic: "SymOwner", noSideEffect, ...deprecated, raises: [], tags: [], forbids: [].}

Deprecated

Accepts a node of kind nnkSym and returns its owner's symbol. The meaning of 'owner' depends on sym's NimSymKind and declaration context. For top level declarations this is an nskModule symbol, for proc local variables an nskProc symbol, for enum/object fields an nskType symbol, etc. For symbols without an owner, nil is returned.

See also:

proc parseExpr(s: string; filename: string = ""): NimNode {.noSideEffect, ...raises: [ValueError], tags: [], forbids: [].}

Compiles the passed string to its AST representation. Expects a single expression. Raises ValueError for parsing errors. A filename can be given for more informative errors.Source Edit

proc parseStmt(s: string; filename: string = ""): NimNode {.noSideEffect, ...raises: [ValueError], tags: [], forbids: [].}

Compiles the passed string to its AST representation. Expects one or more statements. Raises ValueError for parsing errors. A filename can be given for more informative errors.Source Edit

proc postfix(node: NimNode; op: string): NimNode {....raises: [], tags: [], forbids: [].}

Source Edit

proc pragma(someProc: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Get the pragma of a proc type. These will be expanded.Source Edit

proc quote(bl: typed; op = "``"): NimNode {.magic: "QuoteAst", noSideEffect, ...raises: [], tags: [], forbids: [].}

Quasi-quoting operator. Accepts an expression or a block and returns the AST that represents it. Within the quoted AST, you are able to interpolate NimNode expressions from the surrounding scope. If no operator is given, quoting is done using backticks. Otherwise, the given operator must be used as a prefix operator for any interpolated expression. The original meaning of the interpolation operator may be obtained by escaping it (by prefixing it with itself) when used as a unary operator: e.g. @ is escaped as @@, &% is escaped as &%&% and so on; see examples.

A custom operator interpolation needs accent quoted (``) whenever it resolves to a symbol.

See also genasts which avoids some issues with quote.

Example:

macro check(ex: untyped) =

var info = ex.lineinfo

var expString = ex.toStrLit

result = quote do: if not ex: echo info & ": Check failed: " & expString check 1 + 1 == 2

Example:

var destroyCalled = false macro bar() = let s = newTree(nnkAccQuoted, ident"=destroy")

result = quote do: type Foo = object

proc `s`(a: var Foo) = destroyCalled = true
block:
  let a = Foo()

bar() doAssert destroyCalled

Example:

var destroyCalled = false macro bar(ident) = var x = 1.5 result = quote("@") do: type Foo = object let @ident = 0 proc =destroy(a: var Foo) = doAssert @x == 1.5 doAssert compiles(@x == 1.5) let b1 = @[1,2] let b2 = @@[1,2] doAssert $b1 == "[1, 2]" doAssert $b2 == "@[1, 2]" destroyCalled = true block: let a = Foo() bar(someident) doAssert destroyCalled

proc &%(x: int): int = 1 proc &%(x, y: int): int = 2

macro bar2() = var x = 3 result = quote("&%") do: var y = &%x doAssert &%&%y == 1 doAssert y &% y == 2 doAssert y == 3 bar2()

Source Edit

proc sameType(a, b: NimNode): bool {.magic: "SameNodeType", noSideEffect, ...raises: [], tags: [], forbids: [].}

Compares two Nim nodes' types. Return true if the types are the same, e.g. true when comparing alias with original type.Source Edit

proc setLineInfo(arg: NimNode; file: string; line: int; column: int) {. ...raises: [], tags: [], forbids: [].}

Sets the line info on the NimNode. The file needs to exists, but can be a relative path. If you want to attach line info to a block using quote you'll need to add the line information after the quote block.Source Edit

proc signatureHash(n: NimNode): string {.magic: "NSigHash", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns a stable identifier derived from the signature of a symbol. The signature combines many factors such as the type of the symbol, the owning module of the symbol and others. The same identifier is used in the back-end to produce the mangled symbol name.Source Edit

proc strVal(n: NimNode): string {.magic: "NStrVal", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the string value of an identifier, symbol, comment, or string literal.

See also:

proc strVal=(n: NimNode; val: string) {.magic: "NSetStrVal", noSideEffect, ...raises: [], tags: [], forbids: [].}

Sets the string value of a string literal or comment. Setting strVal is disallowed for nnkIdent and nnkSym nodes; a new node must be created using ident or bindSym instead.

See also:

proc symBodyHash(s: NimNode): string {.noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns a stable digest for symbols derived not only from type signature and owning module, but also implementation body. All procs/variables used in the implementation of this symbol are hashed recursively as well, including magics from system module.Source Edit

proc symbol(n: NimNode): NimSym {.magic: "NSymbol", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.

Source Edit

proc symbol=(n: NimNode; val: NimSym) {.magic: "NSetSymbol", noSideEffect, ...deprecated: "Deprecated since version 0.18.1; Generate a new 'NimNode' with 'genSym' instead.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.1; Generate a new 'NimNode' with 'genSym' instead.

Source Edit

proc toNimIdent(s: string): NimIdent {.magic: "StrToIdent", noSideEffect, ...deprecated: "Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.", raises: [], tags: [], forbids: [].}

Deprecated: Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.

Constructs an identifier from the string s.Source Edit

proc toStrLit(n: NimNode): NimNode {....raises: [], tags: [], forbids: [].}

Converts the AST n to the concrete Nim code and wraps that in a string literal node.Source Edit

proc treeRepr(n: NimNode): string {....gcsafe, raises: [], tags: [], forbids: [].}

Convert the AST n to a human-readable tree-like string.

See also repr, lispRepr, and astGenRepr.

Source Edit

proc typeKind(n: NimNode): NimTypeKind {.magic: "NGetType", noSideEffect, ...raises: [], tags: [], forbids: [].}

Returns the type kind of the node 'n' that should represent a type, that means the node should have been obtained via getType.Source Edit

proc unpackPostfix(node: NimNode): tuple[node: NimNode, op: string] {. ...raises: [], tags: [], forbids: [].}

Source Edit

proc warning(msg: string; n: NimNode = nil) {.magic: "NWarning", ...gcsafe, raises: [], tags: [], forbids: [].}

Writes a warning message at compile time.Source Edit

Iterators

iterator children(n: NimNode): NimNode {.inline, ...raises: [], tags: [], forbids: [].}

Iterates over the children of the NimNode n.Source Edit

iterator items(n: NimNode): NimNode {.inline, ...raises: [], tags: [], forbids: [].}

Iterates over the children of the NimNode n.Source Edit

iterator pairs(n: NimNode): (int, NimNode) {.inline, ...raises: [], tags: [], forbids: [].}

Iterates over the children of the NimNode n and its indices.Source Edit

Macros

macro dumpAstGen(s: untyped): untyped

Accepts a block of nim code and prints the parsed abstract syntax tree using the astGenRepr proc. Printing is done at compile time.

You can use this as a tool to write macros quicker by writing example outputs and then copying the snippets into the macro for modification.

For example:

dumpAstGen: echo "Hello, World!"

Outputs:

nnkStmtList.newTree( nnkCommand.newTree( newIdentNode("echo"), newLit("Hello, World!") ) )

Also see dumpTree and dumpLisp.

Source Edit

macro dumpLisp(s: untyped): untyped

Accepts a block of nim code and prints the parsed abstract syntax tree using the lispRepr proc. Printing is done at compile time.

You can use this as a tool to explore the Nim's abstract syntax tree and to discover what kind of nodes must be created to represent a certain expression/statement.

For example:

dumpLisp: echo "Hello, World!"

Outputs:

(StmtList (Command (Ident "echo") (StrLit "Hello, World!")))

Also see dumpAstGen and dumpTree.

Source Edit

macro dumpTree(s: untyped): untyped

Accepts a block of nim code and prints the parsed abstract syntax tree using the treeRepr proc. Printing is done at compile time.

You can use this as a tool to explore the Nim's abstract syntax tree and to discover what kind of nodes must be created to represent a certain expression/statement.

For example:

dumpTree: echo "Hello, World!"

Outputs:

StmtList Command Ident "echo" StrLit "Hello, World!"

Also see dumpAstGen and dumpLisp.

Source Edit

macro expandMacros(body: typed): untyped

Expands one level of macro - useful for debugging. Can be used to inspect what happens when a macro call is expanded, without altering its result.

For instance,

import std/[sugar, macros]

let x = 10 y = 20 expandMacros: dump(x + y)

will actually dump x + y, but at the same time will print at compile time the expansion of the dump macro, which in this case is debugEcho ["x + y", " = ", x + y].

Source Edit

macro getCustomPragmaVal(n: typed; cp: typed{nkSym}): untyped

Expands to value of custom pragma cp of expression n which is expected to be nnkDotExpr, a proc or a type.

See also hasCustomPragma.

template serializationKey(key: string) {.pragma.} type MyObj {.serializationKey: "mo".} = object myField {.serializationKey: "mf".}: int var o: MyObj assert(o.myField.getCustomPragmaVal(serializationKey) == "mf") assert(o.getCustomPragmaVal(serializationKey) == "mo") assert(MyObj.getCustomPragmaVal(serializationKey) == "mo")

Source Edit

macro hasCustomPragma(n: typed; cp: typed{nkSym}): untyped

Expands to true if expression n which is expected to be nnkDotExpr (if checking a field), a proc or a type has custom pragma cp.

See also getCustomPragmaVal.

template myAttr() {.pragma.} type MyObj = object myField {.myAttr.}: int

proc myProc() {.myAttr.} = discard

var o: MyObj assert(o.myField.hasCustomPragma(myAttr)) assert(myProc.hasCustomPragma(myAttr))

Source Edit

macro unpackVarargs(callee: untyped; args: varargs[untyped]): untyped

Calls callee with args unpacked as individual arguments. This is useful in 2 cases:

Example:

template call1(fun: typed; args: varargs[untyped]): untyped = unpackVarargs(fun, args)

template call2(fun: typed; args: varargs[typed]): untyped = unpackVarargs(fun, args) proc fn1(a = 0, b = 1) = discard (a, b) call1(fn1, 10, 11) call1(fn1) if false: call2(echo, 10, 11)

Source Edit

Templates

template findChild(n: NimNode; cond: untyped): NimNode {.dirty.}

Find the first child node matching condition (or nil).

var res = findChild(n, it.kind == nnkPostfix and it.basename.ident == ident"foo")

Source Edit

template or(x, y: NimNode): NimNode

Evaluate x and when it is not an empty node, return it. Otherwise evaluate to y. Can be used to chain several expressions to get the first expression that is not empty.

let node = mightBeEmpty() or mightAlsoBeEmpty() or fallbackNode

Source Edit