harun al rasid | North Bengal University (original) (raw)
Uploads
Papers by harun al rasid
Chemical Physics, 2009
In this work, we report intramolecular charge transfer (ICT) suppressed excited state intramolecu... more In this work, we report intramolecular charge transfer (ICT) suppressed excited state intramolecular proton transfer (ESIPT) process in 4-(diethylamino)-2-hydroxybenzaldehyde (DEAHB). Photophysical properties of DEAHB have been extensively studied in different solvents with varying pH, polarity, and hydrogen bonding capability of the solvent using steady state and time-resolved spectroscopy. To establish the competition between the ICT and ESIPT processes in DEAHB, we have synthesized and studied the photophysical properties of 4-(diethylamino)-2-methoxybenzaldehyde (DEAMB) molecule where only the charge transfer process has been observed. Recently, we have reported simple Schiff base molecules (J. Phys. Chem. A 2012, 116, 10948) formed by condensation of DEAHB and hydrazine (5-(diethylamino)-2-[(4-(diethylamino)benzylidene)hydrazonomethyl]phenol (DDBHP) and N,N′-bis(4-N,N-(diethylamino)salisalidene)hydrazine (DEASH)), where charge transfer is assisted by the proton transfer process. In the present case, the DEAHB molecule shows the reverse phenomenon; i.e., charge transfer is suppressed by the proton transfer process. Comparing the photophysical properties of DEAHB with DEAMB it is also found that ICT process in DEAHB is suppressed by the ESIPT process.
Chemical Physics, 2009
In this work, we report intramolecular charge transfer (ICT) suppressed excited state intramolecu... more In this work, we report intramolecular charge transfer (ICT) suppressed excited state intramolecular proton transfer (ESIPT) process in 4-(diethylamino)-2-hydroxybenzaldehyde (DEAHB). Photophysical properties of DEAHB have been extensively studied in different solvents with varying pH, polarity, and hydrogen bonding capability of the solvent using steady state and time-resolved spectroscopy. To establish the competition between the ICT and ESIPT processes in DEAHB, we have synthesized and studied the photophysical properties of 4-(diethylamino)-2-methoxybenzaldehyde (DEAMB) molecule where only the charge transfer process has been observed. Recently, we have reported simple Schiff base molecules (J. Phys. Chem. A 2012, 116, 10948) formed by condensation of DEAHB and hydrazine (5-(diethylamino)-2-[(4-(diethylamino)benzylidene)hydrazonomethyl]phenol (DDBHP) and N,N′-bis(4-N,N-(diethylamino)salisalidene)hydrazine (DEASH)), where charge transfer is assisted by the proton transfer process. In the present case, the DEAHB molecule shows the reverse phenomenon; i.e., charge transfer is suppressed by the proton transfer process. Comparing the photophysical properties of DEAHB with DEAMB it is also found that ICT process in DEAHB is suppressed by the ESIPT process.