sourave hossain | North South University (original) (raw)
Related Authors
National Institute of Technology Karnataka,Surathkal
Uploads
Papers by sourave hossain
2020 Digital Image Computing: Techniques and Applications (DICTA), 2020
Face Anti Spoofing (FAS) systems are used to identify malicious spoofing attempts targeting face ... more Face Anti Spoofing (FAS) systems are used to identify malicious spoofing attempts targeting face recognition systems using mediums such as video replay or printed papers. With increasing adoption of face recognition technology as a biometric authentication method, FAS techniques are gaining in importance. From a learning perspective, such systems pose a binary classification task. When implemented with Neural Network based solutions, it is common to use the binary cross entropy (BCE) function as the loss to optimize. In this study, we propose a variant of BCE that enforces a margin in angular space and incorporate it in training the DeepPixBis model [1]. In addition, we also present a method to incorporate such a loss for attentive pixel wise supervision applicable in a fully convolutional setting. Our proposed approach achieves competitive scores in both intra and inter-dataset testing on multiple benchmark datasets, consistently outperforming vanilla DeepPixBis. Interestingly, in ...
Sensors
The emergence of biometric-based authentication using modern sensors on electronic devices has le... more The emergence of biometric-based authentication using modern sensors on electronic devices has led to an escalated use of face recognition technologies. While these technologies may seem intriguing, they are accompanied by numerous implicit drawbacks. In this paper, we look into the problem of face anti-spoofing (FAS) on a frame level in an attempt to ameliorate the risks of face-spoofed attacks in biometric authentication processes. We employed a bi-directional feature pyramid network (BiFPN) that is used for convolutional multi-scaled feature extraction on the EfficientDet detection architecture, which is novel to the task of FAS. We further use these convolutional multi-scaled features in order to perform deep pixel-wise supervision. For all of our experiments, we performed evaluations across all major datasets and attained competitive results for the majority of the cases. Additionally, we showed that introducing an auxiliary self-supervision branch tasked with reconstructing th...
2020 Digital Image Computing: Techniques and Applications (DICTA), 2020
Face Anti Spoofing (FAS) systems are used to identify malicious spoofing attempts targeting face ... more Face Anti Spoofing (FAS) systems are used to identify malicious spoofing attempts targeting face recognition systems using mediums such as video replay or printed papers. With increasing adoption of face recognition technology as a biometric authentication method, FAS techniques are gaining in importance. From a learning perspective, such systems pose a binary classification task. When implemented with Neural Network based solutions, it is common to use the binary cross entropy (BCE) function as the loss to optimize. In this study, we propose a variant of BCE that enforces a margin in angular space and incorporate it in training the DeepPixBis model [1]. In addition, we also present a method to incorporate such a loss for attentive pixel wise supervision applicable in a fully convolutional setting. Our proposed approach achieves competitive scores in both intra and inter-dataset testing on multiple benchmark datasets, consistently outperforming vanilla DeepPixBis. Interestingly, in ...
Sensors
The emergence of biometric-based authentication using modern sensors on electronic devices has le... more The emergence of biometric-based authentication using modern sensors on electronic devices has led to an escalated use of face recognition technologies. While these technologies may seem intriguing, they are accompanied by numerous implicit drawbacks. In this paper, we look into the problem of face anti-spoofing (FAS) on a frame level in an attempt to ameliorate the risks of face-spoofed attacks in biometric authentication processes. We employed a bi-directional feature pyramid network (BiFPN) that is used for convolutional multi-scaled feature extraction on the EfficientDet detection architecture, which is novel to the task of FAS. We further use these convolutional multi-scaled features in order to perform deep pixel-wise supervision. For all of our experiments, we performed evaluations across all major datasets and attained competitive results for the majority of the cases. Additionally, we showed that introducing an auxiliary self-supervision branch tasked with reconstructing th...