Kostas Florios | National Technical University of Athens (original) (raw)
Papers by Kostas Florios
SSRN Electronic Journal, 2000
In this paper we propose an improved version of a core based algorithm for the multi-objective ex... more In this paper we propose an improved version of a core based algorithm for the multi-objective extension of one of the most well-known combinatorial optimization problems, the multi-dimensional knapsack problem. The original algorithm was designed only for bi-objective problems combining an extension of the core concept and a branch-and-bound algorithm. It is a deterministic algorithm and the core concept exploits the “divide and conquer” solution strategy which proves very effective in such problems. The new version is not limited to bi-objective problems; it can effectively handle problems with more than two objective functions and it has features that greatly accelerate the solution process. Namely, these features are the use of a heuristic based on the Dantzig bound in the fathoming process and the better housekeeping of the incumbent list through filtering of solutions. The key parameters of the new algorithm are (a) the size of the core and (b) the number of provided cores. Varying these parameters the user can easily tune the size of the obtained Pareto set. A comparison with evolutionary algorithms, like NSGA–II, SPEA2 and MOEA/D, has been made according to run time and the most widely used metrics (set coverage, set convergence etc). Our new version performs better than the most popular evolutionary algorithms and it is comparable to very recent state-of-the-art metaheuristics, like Multi-objective Memetic Algorithm based on Decomposition (MOMAD), for multi-objective programming.
Composite likelihood estimation has been proposed in the literature for handling intractable like... more Composite likelihood estimation has been proposed in the literature for handling intractable likelihoods. In particular, pairwise likelihood estimation has been recently proposed to estimate models with latent variables and random effects that involve high dimensional integrals. Pairwise estimators are asymptotically consistent and normally distributed but not the most efficient among consistent estimators. Vasdekis et al. (Biostatistics 15:677–689, 2014) proposed a weighted estimator that is found to be more efficient than the unweighted pairwise estimator produced by separate maximizations of pairwise likelihoods. In this paper, we propose a modification to that weighted estimator that leads to simpler computations and study its performance through simulations and a real application.
Applied Mathematics and Computation, 2014
The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is... more The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is one of the most computationally demanding tasks as most of the problems are NP-hard. In the present work we use AUGMECON2 a Multi-Objective Mathematical Programming (MOMP) method which is capable of generating the exact Pareto set in Multi-Objective Integer Programming (MOIP) problems for producing all the Pareto optimal solutions in two popular MOCO problems: The Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective Set Covering Problem (MOSCP). The computational experiment is confined to two-objective problems that are found in the literature. The performance of the algorithm is slightly better to what is already found from previous works and it goes one step further generating the exact Pareto set to till now unsolved problems. The results are provided in a dedicated site and can be useful for benchmarking with other MOMP methods or even Multi-Objective Meta-Heuristics (MOMH) that can check the performance of their approximate solution against the exact solution in MOTSP and MOSCP problems.
Applied Mathematics and Computation, 2013
Generation (or a posteriori) methods in Multi-Objective Mathematical Programming (MOMP) is the mo... more Generation (or a posteriori) methods in Multi-Objective Mathematical Programming (MOMP) is the most computationally demanding category among the MOMP approaches. Due to the dramatic increase in computational speed and the improvement of Mathematical Programming algorithms the generation methods become all the more attractive among today’s decision makers. In the current paper we present the generation method AUGMECON2 which is an improvement of our development, AUGMECON. Although AUGMECON2 is a general purpose method, we will demonstrate that AUGMECON2 is especially suitable for Multi-Objective Integer Programming (MOIP) problems. Specifically, AUGMECON2 is capable of producing the exact Pareto set in MOIP problems by appropriately tuning its running parameters. In this context, we compare the previous and the new version in a series of new and old benchmarks found in the literature. We also compare AUGMECON2’s performance in the generation of the exact Pareto sets with established methods and algorithms based on specific MOIP problems (knapsack, set packing) and on published results. Except from other Mathematical Programming methods, AUGMECON2 is found to be competitive also with Multi-Objective Meta-Heuristics (MOMH) in producing adequate approximations of the Pareto set in Multi-Objective Combinatorial Optimization (MOCO) problems.
Available at SSRN 1007441, 2007
Διαχείριση Ενεργειακών Πόρων & Συστημάτων
Journal of Econometrics, 2008
European Journal of Operational …, 2010
In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) kna... more In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance).
Energy Conversion and Management, 2010
For more than 40 years, Mathematical Programming is the traditional tool for energy planning at t... more For more than 40 years, Mathematical Programming is the traditional tool for energy planning at the national or regional level aiming at cost minimization subject to specific technological, political and demand satisfaction constraints. The liberalization of the energy market along with the ongoing technical progress increased the level of competition and forced energy consumers, even at the unit level, to make their choices among a large number of alternative or complementary energy technologies, fuels and/or suppliers. In the present work we develop a modelling framework for energy planning in units of the tertiary sector giving special emphasis to model reduction and to the uncertainty of the economic parameters. In the given case study, the energy rehabilitation of a hospital in Athens is examined and the installation of a cogeneration, absorption and compression unit is examined for the supply of the electricity, heating and cooling load. The basic innovation of the given energy model lies in the uncertainty modelling through the combined use of Mathematical Programming (namely, Mixed Integer Linear Programming, MILP) and Monte Carlo simulation that permits the risk management for the most volatile parameters of the objective function such as the fuel costs and the interest rate. The results come in the form of probability distributions that provide fruitful information to the decision maker. The effect of model reduction through appropriate data compression of the load data is also addressed.
Computer Aided Chemical Engineering, 2006
Applied Mathematics and Computation, 2009
This paper deals with the bi-objective multi-dimensional knapsack problem. We propose the adaptat... more This paper deals with the bi-objective multi-dimensional knapsack problem. We propose the adaptation of the core concept that is effectively used in single-objective multi-dimensional knapsack problems. The main idea of the core concept is based on the “divide and conquer” principle. Namely, instead of solving one problem with n variables we solve several sub-problems with a fraction of n variables (core variables). The quality of the obtained solution can be adjusted according to the size of the core and there is always a trade off between the solution time and the quality of solution. In the specific study we define the core problem for the multi-objective multi-dimensional knapsack problem. After defining the core we solve the bi-objective integer programming that comprises only the core variables using the Multicriteria Branch and Bound algorithm that can generate the complete Pareto set in small and medium size multi-objective integer programming problems. A small example is used to illustrate the method while computational and economy issues are also discussed. Computational experiments are also presented using available or appropriately modified benchmarks in order to examine the quality of Pareto set approximation with respect to the solution time. Extensions to the general multi-objective case as well as to the computation of the exact solution are also mentioned.
Energy policy, 2008
The aim of this paper is to provide an integrated modeling and optimization framework for energy ... more The aim of this paper is to provide an integrated modeling and optimization framework for energy planning in large consumers of the services’ sector based on mathematical programming. The power demand is vaguely known and the underlying uncertainty is modeled using elements from fuzzy set theory. The defined fuzzy programming model is subsequently transformed to an equivalent multi-objective problem, where the minimization of cost and the maximization of demand satisfaction are the objective functions. The Pareto optimal solutions of this problem are obtained using a novel version of the ε-constraint method and represent the possibly optimal solutions of the original problem under uncertainty. In the present case, in order to select the most preferred Pareto optimal solution, the minimax regret criterion is properly used to indicate the preferred configuration of the system (i.e. the size of the installed units) given the load uncertainty. Furthermore, the paper proposes a model reduction technique that can be used in similar cases and further examines its effect in the final results. The above methodology is applied to the energy rehabilitation of a hospital in the Athens area. The technologies under consideration include a combined heat and power unit for providing power and heat, an absorption unit and/or a compression unit for providing cooling load. The obtained results demonstrate that, increasing the degree of demand satisfaction, the total annual cost increases almost linearly. Although data compression allows obtaining realistic results, the size of the proposed units might be slightly changed.
SSRN Electronic Journal, 2000
In this paper we propose an improved version of a core based algorithm for the multi-objective ex... more In this paper we propose an improved version of a core based algorithm for the multi-objective extension of one of the most well-known combinatorial optimization problems, the multi-dimensional knapsack problem. The original algorithm was designed only for bi-objective problems combining an extension of the core concept and a branch-and-bound algorithm. It is a deterministic algorithm and the core concept exploits the “divide and conquer” solution strategy which proves very effective in such problems. The new version is not limited to bi-objective problems; it can effectively handle problems with more than two objective functions and it has features that greatly accelerate the solution process. Namely, these features are the use of a heuristic based on the Dantzig bound in the fathoming process and the better housekeeping of the incumbent list through filtering of solutions. The key parameters of the new algorithm are (a) the size of the core and (b) the number of provided cores. Varying these parameters the user can easily tune the size of the obtained Pareto set. A comparison with evolutionary algorithms, like NSGA–II, SPEA2 and MOEA/D, has been made according to run time and the most widely used metrics (set coverage, set convergence etc). Our new version performs better than the most popular evolutionary algorithms and it is comparable to very recent state-of-the-art metaheuristics, like Multi-objective Memetic Algorithm based on Decomposition (MOMAD), for multi-objective programming.
Composite likelihood estimation has been proposed in the literature for handling intractable like... more Composite likelihood estimation has been proposed in the literature for handling intractable likelihoods. In particular, pairwise likelihood estimation has been recently proposed to estimate models with latent variables and random effects that involve high dimensional integrals. Pairwise estimators are asymptotically consistent and normally distributed but not the most efficient among consistent estimators. Vasdekis et al. (Biostatistics 15:677–689, 2014) proposed a weighted estimator that is found to be more efficient than the unweighted pairwise estimator produced by separate maximizations of pairwise likelihoods. In this paper, we propose a modification to that weighted estimator that leads to simpler computations and study its performance through simulations and a real application.
Applied Mathematics and Computation, 2014
The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is... more The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is one of the most computationally demanding tasks as most of the problems are NP-hard. In the present work we use AUGMECON2 a Multi-Objective Mathematical Programming (MOMP) method which is capable of generating the exact Pareto set in Multi-Objective Integer Programming (MOIP) problems for producing all the Pareto optimal solutions in two popular MOCO problems: The Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective Set Covering Problem (MOSCP). The computational experiment is confined to two-objective problems that are found in the literature. The performance of the algorithm is slightly better to what is already found from previous works and it goes one step further generating the exact Pareto set to till now unsolved problems. The results are provided in a dedicated site and can be useful for benchmarking with other MOMP methods or even Multi-Objective Meta-Heuristics (MOMH) that can check the performance of their approximate solution against the exact solution in MOTSP and MOSCP problems.
Applied Mathematics and Computation, 2013
Generation (or a posteriori) methods in Multi-Objective Mathematical Programming (MOMP) is the mo... more Generation (or a posteriori) methods in Multi-Objective Mathematical Programming (MOMP) is the most computationally demanding category among the MOMP approaches. Due to the dramatic increase in computational speed and the improvement of Mathematical Programming algorithms the generation methods become all the more attractive among today’s decision makers. In the current paper we present the generation method AUGMECON2 which is an improvement of our development, AUGMECON. Although AUGMECON2 is a general purpose method, we will demonstrate that AUGMECON2 is especially suitable for Multi-Objective Integer Programming (MOIP) problems. Specifically, AUGMECON2 is capable of producing the exact Pareto set in MOIP problems by appropriately tuning its running parameters. In this context, we compare the previous and the new version in a series of new and old benchmarks found in the literature. We also compare AUGMECON2’s performance in the generation of the exact Pareto sets with established methods and algorithms based on specific MOIP problems (knapsack, set packing) and on published results. Except from other Mathematical Programming methods, AUGMECON2 is found to be competitive also with Multi-Objective Meta-Heuristics (MOMH) in producing adequate approximations of the Pareto set in Multi-Objective Combinatorial Optimization (MOCO) problems.
Available at SSRN 1007441, 2007
Διαχείριση Ενεργειακών Πόρων & Συστημάτων
Journal of Econometrics, 2008
European Journal of Operational …, 2010
In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) kna... more In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance).
Energy Conversion and Management, 2010
For more than 40 years, Mathematical Programming is the traditional tool for energy planning at t... more For more than 40 years, Mathematical Programming is the traditional tool for energy planning at the national or regional level aiming at cost minimization subject to specific technological, political and demand satisfaction constraints. The liberalization of the energy market along with the ongoing technical progress increased the level of competition and forced energy consumers, even at the unit level, to make their choices among a large number of alternative or complementary energy technologies, fuels and/or suppliers. In the present work we develop a modelling framework for energy planning in units of the tertiary sector giving special emphasis to model reduction and to the uncertainty of the economic parameters. In the given case study, the energy rehabilitation of a hospital in Athens is examined and the installation of a cogeneration, absorption and compression unit is examined for the supply of the electricity, heating and cooling load. The basic innovation of the given energy model lies in the uncertainty modelling through the combined use of Mathematical Programming (namely, Mixed Integer Linear Programming, MILP) and Monte Carlo simulation that permits the risk management for the most volatile parameters of the objective function such as the fuel costs and the interest rate. The results come in the form of probability distributions that provide fruitful information to the decision maker. The effect of model reduction through appropriate data compression of the load data is also addressed.
Computer Aided Chemical Engineering, 2006
Applied Mathematics and Computation, 2009
This paper deals with the bi-objective multi-dimensional knapsack problem. We propose the adaptat... more This paper deals with the bi-objective multi-dimensional knapsack problem. We propose the adaptation of the core concept that is effectively used in single-objective multi-dimensional knapsack problems. The main idea of the core concept is based on the “divide and conquer” principle. Namely, instead of solving one problem with n variables we solve several sub-problems with a fraction of n variables (core variables). The quality of the obtained solution can be adjusted according to the size of the core and there is always a trade off between the solution time and the quality of solution. In the specific study we define the core problem for the multi-objective multi-dimensional knapsack problem. After defining the core we solve the bi-objective integer programming that comprises only the core variables using the Multicriteria Branch and Bound algorithm that can generate the complete Pareto set in small and medium size multi-objective integer programming problems. A small example is used to illustrate the method while computational and economy issues are also discussed. Computational experiments are also presented using available or appropriately modified benchmarks in order to examine the quality of Pareto set approximation with respect to the solution time. Extensions to the general multi-objective case as well as to the computation of the exact solution are also mentioned.
Energy policy, 2008
The aim of this paper is to provide an integrated modeling and optimization framework for energy ... more The aim of this paper is to provide an integrated modeling and optimization framework for energy planning in large consumers of the services’ sector based on mathematical programming. The power demand is vaguely known and the underlying uncertainty is modeled using elements from fuzzy set theory. The defined fuzzy programming model is subsequently transformed to an equivalent multi-objective problem, where the minimization of cost and the maximization of demand satisfaction are the objective functions. The Pareto optimal solutions of this problem are obtained using a novel version of the ε-constraint method and represent the possibly optimal solutions of the original problem under uncertainty. In the present case, in order to select the most preferred Pareto optimal solution, the minimax regret criterion is properly used to indicate the preferred configuration of the system (i.e. the size of the installed units) given the load uncertainty. Furthermore, the paper proposes a model reduction technique that can be used in similar cases and further examines its effect in the final results. The above methodology is applied to the energy rehabilitation of a hospital in the Athens area. The technologies under consideration include a combined heat and power unit for providing power and heat, an absorption unit and/or a compression unit for providing cooling load. The obtained results demonstrate that, increasing the degree of demand satisfaction, the total annual cost increases almost linearly. Although data compression allows obtaining realistic results, the size of the proposed units might be slightly changed.