numpy.array_equal — NumPy v2.2 Manual (original) (raw)
numpy.array_equal(a1, a2, equal_nan=False)[source]#
True if two arrays have the same shape and elements, False otherwise.
Parameters:
a1, a2array_like
Input arrays.
equal_nanbool
Whether to compare NaN’s as equal. If the dtype of a1 and a2 is complex, values will be considered equal if either the real or the imaginary component of a given value is nan
.
Returns:
bbool
Returns True if the arrays are equal.
See also
Returns True if two arrays are element-wise equal within a tolerance.
Returns True if input arrays are shape consistent and all elements equal.
Examples
np.array_equal([1, 2], [1, 2]) True
np.array_equal(np.array([1, 2]), np.array([1, 2])) True
np.array_equal([1, 2], [1, 2, 3]) False
np.array_equal([1, 2], [1, 4]) False
a = np.array([1, np.nan]) np.array_equal(a, a) False
np.array_equal(a, a, equal_nan=True) True
When equal_nan
is True, complex values with nan components are considered equal if either the real or the imaginary components are nan.
a = np.array([1 + 1j]) b = a.copy() a.real = np.nan b.imag = np.nan np.array_equal(a, b, equal_nan=True) True