numpy.array_equal — NumPy v2.2 Manual (original) (raw)

numpy.array_equal(a1, a2, equal_nan=False)[source]#

True if two arrays have the same shape and elements, False otherwise.

Parameters:

a1, a2array_like

Input arrays.

equal_nanbool

Whether to compare NaN’s as equal. If the dtype of a1 and a2 is complex, values will be considered equal if either the real or the imaginary component of a given value is nan.

Returns:

bbool

Returns True if the arrays are equal.

See also

allclose

Returns True if two arrays are element-wise equal within a tolerance.

array_equiv

Returns True if input arrays are shape consistent and all elements equal.

Examples

np.array_equal([1, 2], [1, 2]) True

np.array_equal(np.array([1, 2]), np.array([1, 2])) True

np.array_equal([1, 2], [1, 2, 3]) False

np.array_equal([1, 2], [1, 4]) False

a = np.array([1, np.nan]) np.array_equal(a, a) False

np.array_equal(a, a, equal_nan=True) True

When equal_nan is True, complex values with nan components are considered equal if either the real or the imaginary components are nan.

a = np.array([1 + 1j]) b = a.copy() a.real = np.nan b.imag = np.nan np.array_equal(a, b, equal_nan=True) True