numpy.linalg.norm — NumPy v2.2 Manual (original) (raw)
linalg.norm(x, ord=None, axis=None, keepdims=False)[source]#
Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ord
parameter.
Parameters:
xarray_like
Input array. If axis is None, x must be 1-D or 2-D, unless _ord_is None. If both axis and ord are None, the 2-norm ofx.ravel
will be returned.
ord{int, float, inf, -inf, ‘fro’, ‘nuc’}, optional
Order of the norm (see table under Notes
for what values are supported for matrices and vectors respectively). inf means numpy’sinf object. The default is None.
axis{None, int, 2-tuple of ints}, optional.
If axis is an integer, it specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If axis is None then either a vector norm (when _x_is 1-D) or a matrix norm (when x is 2-D) is returned. The default is None.
keepdimsbool, optional
If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x.
Returns:
nfloat or ndarray
Norm of the matrix or vector(s).
Notes
For values of ord < 1
, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for various numerical purposes.
The following norms can be calculated:
The Frobenius norm is given by [1]:
\(||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}\)
The nuclear norm is the sum of the singular values.
Both the Frobenius and nuclear norm orders are only defined for matrices and raise a ValueError when x.ndim != 2
.
References
[1]
G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples
import numpy as np from numpy import linalg as LA a = np.arange(9) - 4 a array([-4, -3, -2, ..., 2, 3, 4]) b = a.reshape((3, 3)) b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])
LA.norm(a) 7.745966692414834 LA.norm(b) 7.745966692414834 LA.norm(b, 'fro') 7.745966692414834 LA.norm(a, np.inf) 4.0 LA.norm(b, np.inf) 9.0 LA.norm(a, -np.inf) 0.0 LA.norm(b, -np.inf) 2.0
LA.norm(a, 1) 20.0 LA.norm(b, 1) 7.0 LA.norm(a, -1) -4.6566128774142013e-010 LA.norm(b, -1) 6.0 LA.norm(a, 2) 7.745966692414834 LA.norm(b, 2) 7.3484692283495345
LA.norm(a, -2) 0.0 LA.norm(b, -2) 1.8570331885190563e-016 # may vary LA.norm(a, 3) 5.8480354764257312 # may vary LA.norm(a, -3) 0.0
Using the axis argument to compute vector norms:
c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) LA.norm(c, ord=1, axis=1) array([ 6., 6.])
Using the axis argument to compute matrix norms:
m = np.arange(8).reshape(2,2,2) LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824)