numpy.random.random_sample — NumPy v2.2 Manual (original) (raw)

random.random_sample(size=None)#

Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample \(Unif[a, b), b > a\) multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters:

sizeint or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), thenm * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns:

outfloat or ndarray of floats

Array of random floats of shape size (unless size=None, in which case a single float is returned).

Examples

np.random.random_sample() 0.47108547995356098 # random type(np.random.random_sample()) <class 'float'> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]])