1 |
Manifolds: Definitions and Examples |
(PDF) |
2 |
Smooth Maps and the Notion of EquivalenceStandard Pathologies |
(PDF) |
3 |
The Derivative of a Map between Vector Spaces |
(PDF) |
4 |
Inverse and Implicit Function Theorems |
(PDF) |
5 |
More Examples |
(PDF) |
6 |
Vector Bundles and the Differential: New Vector Bundles from Old |
(PDF) |
7 |
Vector Bundles and the Differential: The Tangent Bundle |
(PDF) |
8 |
ConnectionsPartitions of Unity The Grassmanian is Universal |
(PDF) |
9 |
The Embedding Manifolds in RN |
(PDF) |
10-11 |
Sard’s Theorem |
(PDF) |
12 |
Stratified Spaces |
(PDF) |
13 |
Fiber Bundles |
(PDF) |
14 |
Whitney’s Embedding Theorem, Medium Version |
(PDF) |
15 |
A Brief Introduction to Linear Analysis: Basic DefinitionsA Brief Introduction to Linear Analysis: Compact Operators |
(PDF) |
16-17 |
A Brief Introduction to Linear Analysis: Fredholm Operators |
(PDF) |
18-19 |
Smale’s Sard Theorem |
(PDF) |
20 |
Parametric Transversality |
(PDF) |
21-22 |
The Strong Whitney Embedding Theorem |
(PDF) |
23-28 |
Morse Theory |
(PDF) |
29 |
Canonical Forms: The Lie Derivative |
(PDF) |
30 |
Canonical Forms: The Frobenious Integrability TheoremCanonical Forms: Foliations Characterizing a Codimension One Foliation in Terms of its Normal Vector The Holonomy of Closed Loop in a Leaf Reeb’s Stability Theorem |
(PDF) |
31 |
Differential Forms and de Rham’s Theorem: The Exterior Algebra |
(PDF) |
32 |
Differential Forms and de Rham’s Theorem: The Poincaré Lemma and Homotopy Invariance of the de Rham CohomologyCech Cohomology |
(PDF) |
33 |
Refinement The Acyclicity of the Sheaf of p-forms |
(PDF) |
34 |
The Poincaré Lemma Implies the Equality of Cech Cohomology and de Rham Cohomology |
(PDF) |
35 |
The Immersion Theorem of Smale |
(PDF) |