A003010 - OEIS (original) (raw)
COMMENTS
Albert Beiler states (page 228 of Recreations in the Theory of Numbers): D. H. Lehmer modified Lucas's test to the relatively simple form: If and only if 2^n-1 divides a(n-2) then 2^n-1 is a prime, otherwise it is composite. Since 2^3 - 1 is a factor of a(1) = 14, 2^3 - 1 = 7 is a prime. - Gary W. Adamson, Jun 07 2003
a(n) - a(n-1) divides a(n+1) - a(n). - Thomas Ordowski, Dec 24 2016
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 228.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
R. K. Guy, Unsolved Problems in Number Theory, Section A3.
Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 78.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 205.
LINKS
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
FORMULA
a(n) = ceiling((2 + sqrt(3))^(2^n)). - Benoit Cloitre, Nov 30 2002
More generally, if u(0) = z, integer > 2 and u(n) = a(n-1)^2 - 2 then u(n) = ceiling(c^(2^n)) where c = (1/2)*(z+sqrt(z^2-4)) is the largest root of x^2 - zx + 1 = 0. - Benoit Cloitre, Dec 03 2002
a(n) = (2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n). - John Sillcox (johnsillcox(AT)hotmail.com), Sep 20 2003
a(n) = ceiling(tan(5*Pi/12)^(2^n)). Note: 5*Pi/12 radians is 75 degrees. - Jason M. Follas (jasonfollas(AT)hotmail.com), Jan 16 2004
Sum_{n >= 0} 1/( Product_{k = 0..n} a(k) ) = 2 - sqrt(3). - Paul D. Hanna, Aug 11 2004
To generate the n-th number in the sequence: let x = 2^(n-1), a = 2, b = sqrt(3). Take every other term of the binomial expansion (a+b)^x times 2.
E.g., for the 4th term: x = 2^(4-1) = 8, the binomial expansion is: a^8 + 7a^7 b + 28a^6 b^2 + 56a^5 b^3 + 70a^4 b^4 + 56a^3 b^5 + 28a^2 b^6 + 7a b^7 + b^8, every other term times 2: 2(a^8 + 28a^6 b^2 + 70a^4 b^4 + 28a^2 b^6 + b^8) = 2(256 + (28)(64)(3) + (70)(16)(9) + (28)(4)(27) + 81) = 2(18817) = 37634. (End)
a(n) = 2*cosh( 2^(n-1)*log(sqrt(3)+2) ) For n > 0, a(n) = 2 + 3 * 4^n * (Product_{k=0..n-2} (a(k)/2))^2, where a(k)/2 = A002812(k) is a coprime sequence. - M. F. Hasler, Mar 09 2007
a(n) = 2*T(2^n,2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 2 - sqrt(3). Thus 2 - sqrt(3) = 1/4 + 1/(4*14) + 1/(4*14*194) + ... as noted by Hanna above. See Liardet and Stambul. Cf. A001566, A003423 and A003487. - Peter Bala, Oct 31 2012
2*sqrt(3)/5 = Product_{n = 0..oo} (1 - 1/a(n)).
sqrt(3) = Product_{n = 0..oo} (1 + 2/a(n)).
a(n+1) - a(n) = a(n)^2 - a(n-1)^2. - Thomas Ordowski, Dec 24 2016
a(n) = 2*cos(2^n * arccos(2)). - Ryan Brooks, Oct 27 2020
a(n) = 2 + 2*Product_{k = 0..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 4. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
MAPLE
a := n-> if n>0 then a(n-1)^2-2 else 4 fi: 'a(i)' $ i=0..9; # M. F. Hasler, Mar 09 2007
a := n-> simplify(2*ChebyshevT(2^n, 2), 'ChebyshevT'): seq(a(n), n=0..7);
MATHEMATICA
seqLucasLehmer[0] = 4; seqLucasLehmer[n_] := seqLucasLehmer[n - 1]^2 - 2; Array[seqLucasLehmer, 8, 0] (* Robert G. Wilson v, Jun 28 2012 *)
PROG
(PARI)
a(n)=if(n, a(n-1)^2-2, 4)
vector(10, i, a(i-1)) \\ M. F. Hasler, Mar 09 2007
(Magma) [n le 1 select 4 else Self(n-1)^2-2: n in [1..10]]; // Vincenzo Librandi, Aug 24 2015
(Python)
from itertools import accumulate
def f(anm1, _): return anm1**2 - 2
EXTENSIONS
One more term from Thomas A. Rockwell (LlewkcoRAT(AT)aol.com), Jan 18 2005