A008952 - OEIS (original) (raw)

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 7, 1, 2, 5, 1, 2, 4, 9, 1, 3, 7, 1, 2, 5, 1, 2, 4, 9, 1, 3, 7, 1, 2, 5, 1, 2, 4, 9, 1, 3, 7, 1, 3, 6, 1, 2, 4, 9, 1, 3, 7, 1, 3, 6, 1, 2, 4, 9, 1, 3

COMMENTS

Statistically, sequence obeys Benford's law, i.e. digit d occurs with probability log_10(1 + 1/d); thus 1 appears about 6.6 times more often than 9. - Lekraj Beedassy, May 04 2005

The most significant digits of the n-th powers of 2 are not cyclic and in the first 1000000 terms, 1 appears 301030 times, 2 appears 176093, 3 appears 124937, 4 appears 96911, 5 appears 79182, 6 appears 66947, 7 appears 57990, 8 appears 51154 and 9 appears 45756 times. - Robert G. Wilson v, Feb 03 2008

In fact the sequence follows Benford's law precisely by the equidistribution theorem. - Charles R Greathouse IV, Oct 11 2015

FORMULA

a(n) = [2^n / 10^([log_10(2^n)])] = [2^n / 10^([n*log_10(2)])].

MAPLE

a:= n-> parse(""||(2^n)[1]):

MATHEMATICA

a[n_] := First@ IntegerDigits[2^n]; Array[a, 105, 0] (* Robert G. Wilson v, Feb 03 2008 and corrected Nov 24 2014 *)