A031346 - OEIS (original) (raw)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 2, 3, 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 1, 1, 2, 2, 3, 3, 2, 4, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 3, 3, 3, 3, 3, 3, 2
REFERENCES
M. Gardner, Fractal Music, Hypercards and More Mathematical Recreations from Scientific American, Persistence of Numbers, pp. 120-1; 186-7, W. H. Freeman NY 1992.
James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 35.
EXAMPLE
For n = 999: A007954(999) = 729, A007954(729) = 126, A007954(126) = 12 and A007954(12) = 2. The fourth iteration of "multiply digits" yields a single-digit number, so a(999) = 4. - Felix Fröhlich, Jul 17 2016
MAPLE
A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: [A031346](/A031346 "Multiplicative persistence: number of iterations of "multiply digits" needed to reach a number < 10.") := proc(n) local k, m: k:=0:m:=n: while(length(m)>1)do m:=A007954(m):k:=k+1: od: return k: end: seq([A031346](/A031346 "Multiplicative persistence: number of iterations of "multiply digits" needed to reach a number < 10.")(n), n=0..100); # Nathaniel Johnston, May 04 2011
MATHEMATICA
Table[Length[NestWhileList[Times@@IntegerDigits[#]&, n, #>=10&]], {n, 0, 100}]-1 (* Harvey P. Dale, Aug 27 2016 *)
PROG
(Python)
from operator import mul
from functools import reduce
mp = 0
while n > 9:
n = reduce(mul, (int(d) for d in str(n)))
mp += 1
return mp
(PARI) a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i])
a(n) = my(k=n, i=0); while(#Str(k) > 1, k=a007954(k); i++); i \\ Felix Fröhlich, Jul 17 2016
(Magma) f:=func<n|&*Intseq(n)>; a:=[]; for n in [0..100] do s:=0; k:=n; while k ge 10 do s:=s+1; k:=f(k); end while; Append(~a, s); end for; a; // Marius A. Burtea, Jan 12 2020
CROSSREFS
Cf. A007954 (product of decimal digits of n).
Cf. A010888 (additive digital root of n).
Cf. A031286 (additive persistence of n).
Cf. A031347 (multiplicative digital root of n).
Cf. A263131 (ordinal transform).