A066498 - OEIS (original) (raw)
7, 9, 13, 14, 18, 19, 21, 26, 27, 28, 31, 35, 36, 37, 38, 39, 42, 43, 45, 49, 52, 54, 56, 57, 61, 62, 63, 65, 67, 70, 72, 73, 74, 76, 77, 78, 79, 81, 84, 86, 90, 91, 93, 95, 97, 98, 99, 103, 104, 105, 108, 109, 111, 112, 114, 117, 119, 122, 124, 126, 127, 129, 130, 133
COMMENTS
Numbers k such that x^3 == 1 (mod k) has solutions 1 < x < k.
Terms are multiple of 9 or of a prime of the form 6k+1.
If k is a term of this sequence, then G = <x, y|x^k = y^3 = 1, yxy^(-1) = x^r> is a non-abelian group of order 3k, where 1 < r < n and r^3 == 1 (mod k). For example, G can be the subgroup of GL(2, Z_k) generated by x = {{1, 1}, {0, 1}} and y = {{r, 0}, {0, 1}}. - Jianing Song, Sep 17 2019
The asymptotic density of this sequence is 1 (Dressler, 1975). - Amiram Eldar, Mar 21 2021
EXAMPLE
If n < 7 then x^3 = 1 (mod n) has no solution 1 < x < n, but {2,4} are solutions to x^3 == 1 (mod 7), hence a(1) = 7.
MATHEMATICA
Select[Range[150], Divisible[EulerPhi[#], 3]&] (* Harvey P. Dale, Jan 12 2011 *)
PROG
(PARI) isok(k)={ eulerphi(k)%3 == 0 } \\ Harry J. Smith, Feb 18 2010
CROSSREFS
A007645 gives the primes congruent to 1 mod 3.
EXTENSIONS
Simpler definition from Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 25 2003
Corrected and extended by Ray Chandler, Nov 05 2003