A068140 - OEIS (original) (raw)

80, 135, 296, 343, 351, 375, 512, 567, 624, 728, 783, 944, 999, 1160, 1215, 1375, 1376, 1431, 1592, 1624, 1647, 1808, 1863, 2024, 2079, 2240, 2295, 2375, 2400, 2456, 2511, 2624, 2672, 2727, 2888, 2943, 3087, 3104, 3159, 3320, 3375, 3429, 3536, 3591

COMMENTS

Cubeful numbers with cubeful successors. This is to cubes as A068781 is to squares. 1375 is the smallest of three consecutive numbers divisible by a cube, since 1375 = 5^3 * 11 and 1376 = 2^5 * 43 and 1377 = 3^4 * 17. What is the smallest of four consecutive numbers divisible by a cube? Of n consecutive numbers divisible by a cube? - Jonathan Vos Post, Sep 18 2007

22624 is the smallest of four consecutive numbers each divisible by a cube, with factorizations 2^5 * 7 * 101, 5^3 * 181, 2 * 3^3 * 419, and 11^3 * 17. - D. S. McNeil, Dec 10 2010

18035622 is the smallest of five consecutive numbers each divisible by a cube. 4379776620 is the smallest of six consecutive numbers each divisible by a cube. 1204244328624 is the smallest of seven consecutive numbers each divisible by a cube. - Donovan Johnson, Dec 13 2010

The sequence is the union, over all pairs of distinct primes (p,q), of numbers == 0 mod p^3 and == -1 mod q^3 or vice versa. - Robert Israel, Aug 13 2018

The asymptotic density of this sequence is 1 - 2/zeta(3) + Product_{p prime} (1 - 2/p^3) = 1 - 2 * A088453 + A340153 = 0.013077991848467056243... - Amiram Eldar, Feb 16 2021

EXAMPLE

343 is a term as 343 = 7^3 and 344= 2^3 * 43.

MAPLE

isA068140 := proc(n)

isA046099(n) and isA046099(n+1) ;

end proc:

for n from 1 to 4000 do

if isA068140(n) then

printf("%d, ", n) ;

end if;

MATHEMATICA

a = b = 0; Do[b = Max[ Transpose[ FactorInteger[n]] [[2]]]; If[a > 2 && b > 2, Print[n - 1]]; a = b, {n, 2, 5000}]

Select[Range[2, 6000], Max[Transpose[FactorInteger[ # ]][[2]]] > 2 && Max[Transpose[FactorInteger[ # + 1]][[2]]] > 2 &] (* Jonathan Vos Post, Sep 18 2007 *)

SequencePosition[Table[If[AnyTrue[Rest[Divisors[n]], IntegerQ[Surd[#, 3]]&], 1, 0], {n, 3600}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 18 2020 *)

CROSSREFS

Cf. A046099, A063528, A068781, A068782, A068783, A068784, A088453, A122692, A174113, A340152, A340153.