A068403 - OEIS (original) (raw)
A068403
Numbers k such that sigma(k) > 3*k.
27
180, 240, 360, 420, 480, 504, 540, 600, 660, 720, 780, 840, 900, 960, 1008, 1080, 1200, 1260, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1872, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520, 2640
COMMENTS
Davenport shows that these numbers have positive density. Are there good bounds for the density?
G. Miller & M. Whalen suggested that 1018976683725 (3^3*5^2*7^2*11*13*17*19*23*29) might be the smallest odd number in the sequence (a fact now, see A119240 and A023197). - Michel Marcus, May 01 2013
Behrend (1933) found the bounds (0.009, 0.110) for the asymptotic density.
Wall et al. (1972) found the bounds (0.0186, 0.0461).
The upper bound was reduced to 0.0214614 using Deléglise's method by McDaniel College (2010). (End)
Odd terms have a prime factor p >= 23. 75369137468625 = 3^4 * 5^3 * 7^2 * 11^2 * 13^2 * 17 * 19 * 23 is the first odd term whose greatest prime factor is 23. - Peter Munn, Sep 24 2025
REFERENCES
Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.
LINKS
Gordon L. Miller and Mary T. Whalen, Multiply Abundant Numbers, School Science and Mathematics, Volume 95, Issue 5 (May 1995), pp. 256-259.
Summer 2010 research group on Abundancy, Abundancy Bounds 2010, McDaniel College, 2010.
MATHEMATICA
Select[Range[3000], DivisorSigma[1, #]>3#&] (* Harvey P. Dale, Aug 12 2023 *)
PROG
(PARI) for(n=1, 3000, if(sigma(n)>3*n, print1(n, ", "))) \\ Indranil Ghosh, Apr 10 2017
(Python)
from sympy import divisor_sigma
print([n for n in range(180, 3001) if divisor_sigma(n)>3*n]) # Indranil Ghosh, Apr 10 2017
CROSSREFS
Terms not divisible by 6 are in A126104.
Cf. A005820 (3-perfect numbers).