A095048 - OEIS (original) (raw)
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 1, 5, 2, 4, 3, 5, 2, 6, 2, 5, 4, 2, 3, 6, 3, 4, 5, 5, 3, 6, 2, 6, 2, 5, 4, 7, 3, 5, 3, 6, 2, 6, 3, 3, 5, 5, 3, 6, 4, 4, 4, 6, 3, 9, 2, 7, 5, 5, 3, 7, 2, 4, 6, 6, 4, 4, 3, 7, 5, 7, 2, 8, 3, 5, 5, 8, 2, 7, 3, 7, 6, 4, 3, 7, 4, 6, 6, 4, 3, 9, 4, 6, 3, 5, 3, 7, 3, 6, 3, 5, 2, 8
COMMENTS
a(n) <= 10, a(A095050(n)) = 10.
Almost all (in the sense of natural density) terms of this sequence are equal to 10. - Charles R Greathouse IV, Nov 16 2022
EXAMPLE
Set of divisors of n=10: {1,2,5,10}, therefore a(10) = #{0,1,2,5} = 4.
Set of divisors of n=16: {1,2,4,8,16}, therefore a(16)=#{1,2,4,6,8} = 5.
MAPLE
local digset ;
digset := {} ;
for d in numtheory[divisors](n) do
digset := digset union convert(convert(d, base, 10), set) ;
end do:
nops(digset) ;
end proc:
PROG
(Haskell)
import Data.List (group, sort)
a095048 = length . group . sort . concatMap show . a027750_row
(Python)
from sympy import divisors
def a(n):
s = set("1"+str(n))
if len(s) == 10: return 10
for d in divisors(n, generator=True):
s |= set(str(d))
if len(s) == 10: return 10
return len(s)
(PARI) a(n) = my(d = divisors(n), s = 0); for(i = 1, #d, v = digits(d[i]); for(j = 1, #v, s = bitor(s, 1<<v[j]); if(s == 1023, return(10)))); hammingweight(s) \\ David A. Corneth, Nov 16 2022