A125134 - OEIS (original) (raw)
A125134
"Brazilian" numbers ("les nombres brésiliens" in French): numbers n such that there is a natural number b with 1 < b < n-1 such that the representation of n in base b has all equal digits.
65
7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90
COMMENTS
The condition b < n-1 is important because every number n has representation 11 in base n-1. - Daniel Lignon, May 22 2015
Every even number >= 8 is Brazilian. Odd Brazilian numbers are in A257521. - Daniel Lignon, May 22 2015
Looking at A190300, it seems that asymptotically 100% of composite numbers are Brazilian, while looking at A085104, it seems that asymptotically 0% of prime numbers are Brazilian. The asymptotic density of Brazilian numbers would thus be 100%. - Daniel Forgues, Oct 07 2016
REFERENCES
Pierre Bornsztein, "Hypermath", Vuibert, Exercise a35, p. 7.
LINKS
9th Iberoamerican Mathematical Olympiad, Problem 1: sensible numbers, Fortaleza, Brazil, September 17-25, 1994.
Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
EXAMPLE
15 is a member since it is 33 in base 4.
MAPLE
isA125134 := proc(n) local k: for k from 2 to n-2 do if(nops(convert(convert(n, base, k), set))=1)then return true: fi: od: return false: end: [A125134](/A125134 ""Brazilian" numbers ("les nombres brésiliens" in French): numbers n such that there is a natural number b with 1 < b < n-1 ...") := proc(n) option remember: local k: if(n=1)then return 7: fi: for k from procname(n-1)+1 do if(isA125134(k))then return k: fi: od: end: seq([A125134](/A125134 ""Brazilian" numbers ("les nombres brésiliens" in French): numbers n such that there is a natural number b with 1 < b < n-1 ...")(n), n=1..65); # Nathaniel Johnston, May 24 2011
MATHEMATICA
fQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; Select[Range[4, 90], fQ] (* T. D. Noe, May 07 2013 *)
PROG
(PARI) for(n=4, 100, for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), print1(n, ", "); break))) \\ Derek Orr, Apr 30 2015
(PARI) is(n)=my(m); if(!isprime(n), return(if(issquare(n, &m), m>3 && (!isprime(m) || m==11), n>6))); for(b=2, n-2, m=digits(n, b); for(i=2, #m, if(m[i]!=m[i-1], next(2))); return(1)); 0 \\ Charles R Greathouse IV, Aug 09 2017
CROSSREFS
Cf. A085104 (prime Brazilian numbers).