A131835 - OEIS (original) (raw)
A131835
Numbers starting with 1.
26
1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142
COMMENTS
The lower and upper asymptotic densities of this sequence are 1/9 and 5/9, respectively. - Amiram Eldar, Feb 27 2021
LINKS
Bryan Brown, Michael Dairyko, Stephan Ramon Garcia, Bob Lutz and Michael Someck, Four quotient set gems, The American Mathematical Monthly, Vol. 121, No. 7 (2014), pp. 590-598; arXiv preprint, arXiv:1312.1036 [math.NT], 2013.
MAPLE
isA131835 := proc(n) if op(-1, convert(n, base, 10)) = 1 then true; else false ; fi ; end: for n from 1 to 300 do if isA131835(n) then printf("%d, ", n) ; fi ; od : # R. J. Mathar, Jul 24 2007
MATHEMATICA
Select[Range[150], IntegerDigits[#][[1]] == 1 &] (* Amiram Eldar, Feb 27 2021 *)
PROG
(Haskell)
a131835 n = a131835_list !! (n-1)
a131835_list = concat $
iterate (concatMap (\x -> map (+ 10 * x) [0..9])) [1]
(PARI) a(n, {base=10}) = my (o=1); while (n>o, n-=o; o*=base); return (o+n-1) \\ Rémy Sigrist, Jun 23 2017
(PARI) a(n) = n--; s = #digits(9*n+1); n + 8 * (10^(s-1))/9 + 1/9 \\ David A. Corneth, Jun 23 2017
(PARI) nxt(n) = my(d = digits(n+1)); if(d[1]==1, n+1, 10^#d) \\ David A. Corneth, Jun 23 2017
(Python)
def A131835(n): return n+(10**(len(str(9*n-8))-1)<<3)//9 # Chai Wah Wu, Dec 07 2024
AUTHOR
Andrew Good (yipes_stripes(AT)yahoo.com), Jul 20 2007