A133617 - OEIS (original) (raw)
3, 4, 3, 2, 7, 1, 5, 6, 5, 1, 1, 5, 5, 6, 2, 1, 3, 3, 3, 4, 6, 3, 5, 8, 3, 3, 3, 7, 3, 6, 0, 8, 6, 0, 3, 6, 9, 5, 6, 7, 4, 1, 8, 2, 6, 6, 5, 9, 2, 6, 5, 3, 0, 8, 6, 5, 2, 8, 4, 4, 4, 7, 7, 7, 6, 7, 5, 4, 9, 1, 2, 9, 8, 6, 5, 7, 7, 0, 7, 8, 4, 2, 6, 3, 8, 5, 4, 8, 1, 9, 4, 5, 8, 3, 9, 9, 5, 4, 4, 0, 3, 8, 2, 2, 0
COMMENTS
10-adic expansion of the iterated exponential 7^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 7^^n == 5172343 (mod 10^7).
REFERENCES
M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
EXAMPLE
343271565115562133346358333736086036956741826659265308652844477767549129865770...
Sequences A133612-A144544 generalize the observation that 7^343 == 343 (mod 1000).
MATHEMATICA
(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[7, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)
CROSSREFS
Cf. A133612, A133613, A133614, A133615, A133616, A133618, A133619, A144539, A144540, A144541, A144542, A144543, A144544.
AUTHOR
Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007
EXTENSIONS
More terms from J. Luis A. Yebra, Dec 12 2008