A134860 - OEIS (original) (raw)
A134860
Wythoff AAB numbers; also, Fib101 numbers: those n for which the Zeckendorf expansion A014417(n) ends with 1,0,1.
15
4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140, 148, 156, 161, 169, 177, 182, 190, 195, 203, 211, 216, 224, 232, 237, 245, 250, 258, 266, 271, 279, 284, 292, 300, 305, 313, 321, 326, 334, 339, 347, 355, 360, 368, 373
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAB=AA+AB and AAB=A+2B-1.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 21 2022
FORMULA
a(n) = A(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
MATHEMATICA
With[{r = Map[Fibonacci, Range[2, 14]]}, Position[#, {1, 0, 1}][[All, 1]] &@ Table[If[Length@ # < 3, {}, Take[#, -3]] &@ IntegerDigits@ Total@ Map[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] &, Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 373}]] (* Michael De Vlieger, Jun 09 2017 *)
PROG
(Python)
from sympy import fibonacci
def a(n):
x=0
while n>0:
k=0
while fibonacci(k)<=n: k+=1
x+=10**(k - 3)
n-=fibonacci(k - 1)
return x
def ok(n): return str(a(n))[-3:]=="101"
print([n for n in range(4, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
(Python)
from math import isqrt
def A134860(n): return 3*(n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 10 2022
CROSSREFS
Cf. A000201, A001622, A001950, A003622, A003623, A035336, A101864, A134859, A035337, A134861, A134862, A134863, A035338, A134864, A035513.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
EXTENSIONS
This is the result of merging two sequences which were really the same. - N. J. A. Sloane, Jun 10 2017