A162643 - OEIS (original) (raw)
4, 9, 12, 16, 18, 20, 25, 28, 32, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 96, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 160, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198
COMMENTS
A number m is a term if and only if it has at least one non-infinitary divisor, or A000005(m) > A037445(m). - Vladimir Shevelev, Feb 23 2017
The asymptotic density of this sequence is 1 - A327839 = 0.3121728605... - Amiram Eldar, Jul 28 2020
MATHEMATICA
Select[Range@ 192, ! IntegerQ@ Log2@ DivisorSigma[0, #] &] (* Michael De Vlieger, Feb 24 2017 *)
PROG
(Haskell)
a162643 n = a162643_list !! (n-1)
a162643_list = filter ((== 0) . a209229 . a000005) [1..]
(Python)
from itertools import count, islice
from sympy import factorint
def A162643_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:any(map(lambda m:((k:=m+1)&-k)^k, factorint(n).values())), count(max(startvalue, 1)))