opentelemetry.metrics package — OpenTelemetry Python documentation (original) (raw)
Module contents
The OpenTelemetry metrics API describes the classes used to generate metrics.
The MeterProvider provides users access to the Meter which in turn is used to create Instrument objects. The Instrument objects are used to record measurements.
This module provides abstract (i.e. unimplemented) classes required for metrics, and a concrete no-op implementation NoOpMeter that allows applications to use the API package alone without a supporting implementation.
To get a meter, you need to provide the package name from which you are calling the meter APIs to OpenTelemetry by calling MeterProvider.get_meterwith the calling instrumentation name and the version of your package.
The following code shows how to obtain a meter using the global MeterProvider:
from opentelemetry.metrics import get_meter
meter = get_meter("example-meter") counter = meter.create_counter("example-counter")
New in version 1.10.0.
Changed in version 1.12.0rc.
class opentelemetry.metrics.CallbackOptions(timeout_millis=10000)
Bases: object
Options for the callback
Parameters:
timeout_millis (float) – Timeout for the callback’s execution. If the callback does asynchronous work (e.g. HTTP requests), it should respect this timeout.
timeout_millis_: float_ = 10000
class opentelemetry.metrics.MeterProvider
Bases: ABC
MeterProvider is the entry point of the API. It provides access to Meter instances.
abstract get_meter(name, version=None, schema_url=None, attributes=None)[source]
Returns a Meter for use by the given instrumentation library.
For any two calls it is undefined whether the same or differentMeter instances are returned, even for different library names.
This function may return different Meter types (e.g. a no-op meter vs. a functional meter).
Parameters:
- name (str) –
The name of the instrumenting module.__name__
may not be used as this can result in different meter names if the meters are in different files. It is better to use a fixed string that can be imported where needed and used consistently as the name of the meter.
This should not be the name of the module that is instrumented but the name of the module doing the instrumentation. E.g., instead of"requests"
, use"opentelemetry.instrumentation.requests"
. - version (Optional[str]) – Optional. The version string of the instrumenting library. Usually this should be the same as
importlib.metadata.version(instrumenting_library_name)
. - schema_url (Optional[str]) – Optional. Specifies the Schema URL of the emitted telemetry.
- attributes (Optional[Mapping[str, Union[str, bool, int, float, Sequence[str], Sequence[bool], Sequence[int], Sequence[float]]]]) – Optional. Attributes that are associated with the emitted telemetry.
Return type:
class opentelemetry.metrics.NoOpMeterProvider
Bases: MeterProvider
The default MeterProvider used when no MeterProvider implementation is available.
get_meter(name, version=None, schema_url=None, attributes=None)[source]
Returns a NoOpMeter.
Return type:
class opentelemetry.metrics.Meter(name, version=None, schema_url=None)
Bases: ABC
Handles instrument creation.
This class provides methods for creating instruments which are then used to produce measurements.
abstract create_counter(name, unit='', description='')[source]
Creates a Counter instrument
Parameters:
- name (str) – The name of the instrument to be created
- unit (str) – The unit for observations this instrument reports. For example,
By
for bytes. UCUM units are recommended. - description (str) – A description for this instrument and what it measures.
Return type:
create_gauge(name, unit='', description='')[source]
Creates a Gauge
instrument
Parameters:
- name (str) – The name of the instrument to be created
- unit (str) – The unit for observations this instrument reports. For example,
By
for bytes. UCUM units are recommended. - description (str) – A description for this instrument and what it measures.
Return type:
Gauge
abstract create_histogram(name, unit='', description='', *, explicit_bucket_boundaries_advisory=None)[source]
Creates a Histogram instrument
Parameters:
- name (str) – The name of the instrument to be created
- unit (str) – The unit for observations this instrument reports. For example,
By
for bytes. UCUM units are recommended. - description (str) – A description for this instrument and what it measures.
Return type:
abstract create_observable_counter(name, callbacks=None, unit='', description='')[source]
Creates an ObservableCounter instrument
An observable counter observes a monotonically increasing count by calling provided callbacks which accept a CallbackOptions and return multiple Observation.
For example, an observable counter could be used to report system CPU time periodically. Here is a basic implementation:
def cpu_time_callback(options: CallbackOptions) -> Iterable[Observation]: observations = [] with open("/proc/stat") as procstat: procstat.readline() # skip the first line for line in procstat: if not line.startswith("cpu"): break cpu, *states = line.split() observations.append(Observation(int(states[0]) // 100, {"cpu": cpu, "state": "user"})) observations.append(Observation(int(states[1]) // 100, {"cpu": cpu, "state": "nice"})) observations.append(Observation(int(states[2]) // 100, {"cpu": cpu, "state": "system"})) # ... other states return observations
meter.create_observable_counter( "system.cpu.time", callbacks=[cpu_time_callback], unit="s", description="CPU time" )
To reduce memory usage, you can use generator callbacks instead of building the full list:
def cpu_time_callback(options: CallbackOptions) -> Iterable[Observation]: with open("/proc/stat") as procstat: procstat.readline() # skip the first line for line in procstat: if not line.startswith("cpu"): break cpu, *states = line.split() yield Observation(int(states[0]) // 100, {"cpu": cpu, "state": "user"}) yield Observation(int(states[1]) // 100, {"cpu": cpu, "state": "nice"}) # ... other states
Alternatively, you can pass a sequence of generators directly instead of a sequence of callbacks, which each should return iterables of Observation:
def cpu_time_callback(states_to_include: set[str]) -> Iterable[Iterable[Observation]]: # accept options sent in from OpenTelemetry options = yield while True: observations = [] with open("/proc/stat") as procstat: procstat.readline() # skip the first line for line in procstat: if not line.startswith("cpu"): break cpu, *states = line.split() if "user" in states_to_include: observations.append(Observation(int(states[0]) // 100, {"cpu": cpu, "state": "user"})) if "nice" in states_to_include: observations.append(Observation(int(states[1]) // 100, {"cpu": cpu, "state": "nice"})) # ... other states # yield the observations and receive the options for next iteration options = yield observations
meter.create_observable_counter( "system.cpu.time", callbacks=[cpu_time_callback({"user", "system"})], unit="s", description="CPU time" )
The CallbackOptions contain a timeout which the callback should respect. For example if the callback does asynchronous work, like making HTTP requests, it should respect the timeout:
def scrape_http_callback(options: CallbackOptions) -> Iterable[Observation]: r = requests.get('http://scrapethis.com', timeout=options.timeout_millis / 10**3) for value in r.json(): yield Observation(value)
Parameters:
- name (str) – The name of the instrument to be created
- callbacks (Optional[Sequence[Union[Callable[[CallbackOptions], Iterable[Observation]], Generator[Iterable[Observation], CallbackOptions, None]]]]) – A sequence of callbacks that return an iterable ofObservation. Alternatively, can be a sequence of generators that each yields iterables of Observation.
- unit (str) – The unit for observations this instrument reports. For example,
By
for bytes. UCUM units are recommended. - description (str) – A description for this instrument and what it measures.
Return type:
abstract create_observable_gauge(name, callbacks=None, unit='', description='')[source]
Creates an ObservableGauge instrument
Parameters:
- name (str) – The name of the instrument to be created
- callbacks (Optional[Sequence[Union[Callable[[CallbackOptions], Iterable[Observation]], Generator[Iterable[Observation], CallbackOptions, None]]]]) – A sequence of callbacks that return an iterable ofObservation. Alternatively, can be a generator that yields iterables of Observation.
- unit (str) – The unit for observations this instrument reports. For example,
By
for bytes. UCUM units are recommended. - description (str) – A description for this instrument and what it measures.
Return type:
abstract create_observable_up_down_counter(name, callbacks=None, unit='', description='')[source]
Creates an ObservableUpDownCounter instrument
Parameters:
- name (str) – The name of the instrument to be created
- callbacks (Optional[Sequence[Union[Callable[[CallbackOptions], Iterable[Observation]], Generator[Iterable[Observation], CallbackOptions, None]]]]) – A sequence of callbacks that return an iterable ofObservation. Alternatively, can be a generator that yields iterables of Observation.
- unit (str) – The unit for observations this instrument reports. For example,
By
for bytes. UCUM units are recommended. - description (str) – A description for this instrument and what it measures.
Return type:
abstract create_up_down_counter(name, unit='', description='')[source]
Creates an UpDownCounter instrument
Parameters:
- name (str) – The name of the instrument to be created
- unit (str) – The unit for observations this instrument reports. For example,
By
for bytes. UCUM units are recommended. - description (str) – A description for this instrument and what it measures.
Return type:
The name of the instrumenting module.
property schema_url_: str | None_
Specifies the Schema URL of the emitted telemetry
property version_: str | None_
The version string of the instrumenting library.
class opentelemetry.metrics.Counter(name, unit='', description='')
Bases: Synchronous
A Counter is a synchronous Instrument which supports non-negative increments.
abstract add(amount, attributes=None, context=None)[source]
Return type:
class opentelemetry.metrics.NoOpCounter(name, unit='', description='')
Bases: Counter
No-op implementation of Counter.
add(amount, attributes=None, context=None)[source]
Return type:
class opentelemetry.metrics.UpDownCounter(name, unit='', description='')
Bases: Synchronous
An UpDownCounter is a synchronous Instrument which supports increments and decrements.
abstract add(amount, attributes=None, context=None)[source]
Return type:
class opentelemetry.metrics.NoOpUpDownCounter(name, unit='', description='')
Bases: UpDownCounter
No-op implementation of UpDownCounter.
add(amount, attributes=None, context=None)[source]
Return type:
class opentelemetry.metrics.Histogram(name, unit='', description='', explicit_bucket_boundaries_advisory=None)
Bases: Synchronous
Histogram is a synchronous Instrument which can be used to report arbitrary values that are likely to be statistically meaningful. It is intended for statistics such as histograms, summaries, and percentile.
abstract record(amount, attributes=None, context=None)[source]
Return type:
class opentelemetry.metrics.NoOpHistogram(name, unit='', description='', explicit_bucket_boundaries_advisory=None)
Bases: Histogram
No-op implementation of Histogram.
record(amount, attributes=None, context=None)[source]
Return type:
class opentelemetry.metrics.ObservableCounter(name, callbacks=None, unit='', description='')
Bases: Asynchronous
An ObservableCounter is an asynchronous Instrument which reports monotonically increasing value(s) when the instrument is being observed.
class opentelemetry.metrics.NoOpObservableCounter(name, callbacks=None, unit='', description='')
Bases: ObservableCounter
No-op implementation of ObservableCounter.
class opentelemetry.metrics.ObservableUpDownCounter(name, callbacks=None, unit='', description='')
Bases: Asynchronous
An ObservableUpDownCounter is an asynchronous Instrument which reports additive value(s) (e.g. the process heap size - it makes sense to report the heap size from multiple processes and sum them up, so we get the total heap usage) when the instrument is being observed.
class opentelemetry.metrics.Instrument(name, unit='', description='')
Bases: ABC
Abstract class that serves as base for all instruments.
class opentelemetry.metrics.Synchronous(name, unit='', description='')
Bases: Instrument
Base class for all synchronous instruments
class opentelemetry.metrics.Asynchronous(name, callbacks=None, unit='', description='')
Bases: Instrument
Base class for all asynchronous instruments
class opentelemetry.metrics.NoOpObservableGauge(name, callbacks=None, unit='', description='')
Bases: ObservableGauge
No-op implementation of ObservableGauge.
class opentelemetry.metrics.ObservableGauge(name, callbacks=None, unit='', description='')
Bases: Asynchronous
Asynchronous Gauge is an asynchronous Instrument which reports non-additive value(s) (e.g. the room temperature - it makes no sense to report the temperature value from multiple rooms and sum them up) when the instrument is being observed.
class opentelemetry.metrics.NoOpObservableUpDownCounter(name, callbacks=None, unit='', description='')
Bases: ObservableUpDownCounter
No-op implementation of ObservableUpDownCounter.
opentelemetry.metrics.get_meter(name, version='', meter_provider=None, schema_url=None, attributes=None)
Returns a Meter for use by the given instrumentation library.
This function is a convenience wrapper foropentelemetry.metrics.MeterProvider.get_meter.
If meter_provider is omitted the current configured one is used.
Return type:
opentelemetry.metrics.get_meter_provider()
Gets the current global MeterProvider object.
Return type:
opentelemetry.metrics.set_meter_provider(meter_provider)
Sets the current global MeterProvider object.
This can only be done once, a warning will be logged if any further attempt is made.
Return type:
class opentelemetry.metrics.Observation(value, attributes=None, context=None)
Bases: object
A measurement observed in an asynchronous instrument
Return/yield instances of this class from asynchronous instrument callbacks.
Parameters:
- value (Union[int, float]) – The float or int measured value
- attributes (Optional[Mapping[str, Union[str, bool, int, float, Sequence[str], Sequence[bool], Sequence[int], Sequence[float]]]]) – The measurement’s attributes
- context (Optional[Context]) – The measurement’s context
property attributes_: Mapping[str, str | bool | int | float | Sequence[str] | Sequence[bool] | Sequence[int] | Sequence[float]] | None_
property context_: Context | None_
property value_: float | int_
class opentelemetry.metrics.NoOpMeter(name, version=None, schema_url=None)
Bases: Meter
The default Meter used when no Meter implementation is available.
All operations are no-op.
create_counter(name, unit='', description='')[source]
Returns a no-op Counter.
Return type:
create_gauge(name, unit='', description='')[source]
Returns a no-op Gauge.
Return type:
Gauge
create_histogram(name, unit='', description='', *, explicit_bucket_boundaries_advisory=None)[source]
Returns a no-op Histogram.
Return type:
create_observable_counter(name, callbacks=None, unit='', description='')[source]
Returns a no-op ObservableCounter.
Return type:
create_observable_gauge(name, callbacks=None, unit='', description='')[source]
Returns a no-op ObservableGauge.
Return type:
create_observable_up_down_counter(name, callbacks=None, unit='', description='')[source]
Returns a no-op ObservableUpDownCounter.
Return type:
create_up_down_counter(name, unit='', description='')[source]
Returns a no-op UpDownCounter.
Return type: