Chiara Uboldi | Aix-Marseille Université (original) (raw)
Papers by Chiara Uboldi
Methods in Pharmacology and Toxicology, 2014
Particle and fibre toxicology, 2016
Poorly soluble cobalt (II, III) oxide particles (Co3O4P) are believed to induce in vitro cytotoxi... more Poorly soluble cobalt (II, III) oxide particles (Co3O4P) are believed to induce in vitro cytotoxic effects via a Trojan-horse mechanism. Once internalized into lysosomal and acidic intracellular compartments, Co3O4P slowly release a low amount of cobalt ions (Co(2+)) that impair the viability of in vitro cultures. In this study, we focused on the genotoxic potential of Co3O4P by performing a comprehensive investigation of the DNA damage exerted in BEAS-2B human bronchial epithelial cells. Our results demonstrate that poorly soluble Co3O4P enhanced the formation of micronuclei in binucleated cells. Moreover, by comet assay we showed that Co3O4P induced primary and oxidative DNA damage, and by scoring the formation of γ-H2Ax foci, we demonstrated that Co3O4P also generated double DNA strand breaks. By comparing the effects exerted by poorly soluble Co3O4P with those obtained in the presence of soluble cobalt chloride (CoCl2), we demonstrated that the genotoxic effects of Co3O4P are no...
ACS Applied Materials & Interfaces, 2016
Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale archit... more Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin films of microphase-separated polyolefin/polyether blends. This is achieved by directing (-CH2-)100 and (-CH2-CH2-O-)25 oligomer fluxes produced by vacuum thermal decomposition of poly(ethylene) and poly(ethylene oxide) onto silicon substrates through the zone of the glow discharge. The strategy enables mixing of thermodynamically incompatible macromolecules at the molecular level, whereas electron-impact-initiated radicals serve as cross-linkers to arrest the subsequent phase separation at the nanoscale. The mechanism of the phase separation as well as the morphology of the films is found to depend on the ratio between the oligomeric fluxes. For polyolefin-rich mixtures, polyether molecules self-organize by nucleation and growth into spherical domains with average height of 22 nm and average diameter of 170 nm. For equinumerous fluxes and for mixtures with the prevalence of polyethers, spinodal decomposition is detected that results in the formation of bicontinuous structures with the characteristic domain size and spacing ranging between 5 × 10(1) -7 × 10(1) nm and 3 × 10(2)-4 × 10(2) nm, respectively. The method is shown to produce films with tunable wettability and biologically nonfouling properties.
European Journal of Pharmaceutics and Biopharmaceutics, 2009
Airway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) a... more Airway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) and adherens junctions (AJ) play a key role in maintaining barrier functions, and are responsible for the selective transport of various substances through the paracellular pathway. In this study we compared a bronchial cell line (16HBE14o-) and primary bronchial cells (HBEC), both cocultivated with the fibroblast cell line Wi-38, with respect to their structural differentiation and their reaction to cytokine stimulation. HBEC formed a pseudostratified epithelial layer and expressed TJ and AJ proteins after 2 weeks in coculture. Mucus-producing and ciliated cells were found within 24 days. Additionally, a beating activity of the ciliated HBEC (14-19 Hz) could be detected. 16HBE14o-in coculture showed a multilayered growth without differentiation to a pseudostratified airway epithelium. Simultaneous exposure to TNF-a-and IFN-c-induced significant changes in barrier function and paracellular permeability in the cocultures of HBEC/Wi-38 but not in the 16HBE14o-/Wi-38. In summary, HBEC in coculture mimic the structure of native polarized bronchial epithelium showing basal, mucus-producing and ciliated cells. Our system provides an opportunity to examine the factors that influence barrier and mucociliary function of bronchial epithelium within a time frame of 3 weeks up to 3 months in an in vivo-like differentiated model.
Mutagenesis, Jan 7, 2016
The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nan... more The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nanomaterials (ENM) through the surface modification in order to prevent possible health effects. In this frame, a number of nanoparticles (NP) have been selected, among which zirconium (ZrO2) and titanium (TiO2) dioxide. In this study, we tested ZrO2NP and TiO2NP either in their pristine (uncoated) form, or modified with citrate and/or silica on their surface. As benchmark material, Aeroxide® P25 was used. We assessed cytotoxicity, genotoxicity and induction of morphological neoplastic transformation of NP by using a panel ofin vitroassays in an established mammalian cell line of murine origin (Balb/3T3). Cell viability was evaluated by means of colony-forming efficiency assay (CFE). Genotoxicity was investigated by cytokinesis-block micronucleus cytome assay (CBMN cyt) and comet assay, and by the use of the restriction enzymes EndoIII and Fpg, oxidatively damaged DNA was detected; finally...
Toxicology in Vitro, 2015
The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the... more The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.
Particle and Fibre Toxicology, 2012
Background: The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and ge... more Background: The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (10, 11 nm, 25 nm), to the presence of sodium citrate on the particles' surface or they are due to a varying degree of internalization of the AuNPs. Since two cell types are present in the major barriers to the outside in the human body, we have also included endothelial cells from the vasculature and blood brain barrier. Results: Transmission electron microscopy demonstrates that the internalized gold nanoparticles are located within vesicles. Increased cytotoxicity was observed after exposure to AuNPs and was found to be concentrationdependent. In addition, cell viability and the proliferation of both endothelial cells decreased after exposure to gold nanoparticles, especially at high concentrations. Moreover, in contrast to the size of the particles (10 nm, 11 nm, 25 nm), the presence of sodium citrate on the nanoparticle surface appeared to enhance these effects. The effects on microvascular endothelial cells from blood vessels were slightly enhanced compared to the effects on brain-derived endothelial cells. A quantification of AuNPs within cells by ICP-AES showed that epithelial cells internalized a higher quantity of AuNPs compared to endothelial cells and that the quantity of uptake is not correlated with the amount of sodium citrate on the nanoparticles' surface.
Particle and Fibre Toxicology, 2009
Background: During the last years engineered nanoparticles (NPs) have been extensively used in di... more Background: During the last years engineered nanoparticles (NPs) have been extensively used in different technologies and consequently many questions have arisen about the risk and the impact on human health following exposure to nanoparticles. Nevertheless, at present knowledge about the cytotoxicity induced by NPs is still largely incomplete. In this context, we have investigated the cytotoxicity induced by gold nanoparticles (AuNPs), which differed in size and purification grade (presence or absence of sodium citrate residues on the particle surface) in vitro, in the human alveolar type-II (ATII)-like cell lines A549 and NCIH441.
Methods in Pharmacology and Toxicology, 2014
Environmental and Molecular Mutagenesis, 2014
International Journal of Nanomedicine, 2014
Particle and Fibre Toxicology, 2013
The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared ... more The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared with those of cobalt ions (Co-ions) using six different cell lines representing lung, liver, kidney, intestine, and the immune system. Dose-response curves were studied in the concentration range of 0.05-1.0mM, employing 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide test, neutral red, and Alamar blue as end point assays following exposures for 48 and 72 h. Data analysis and predictive modeling of the obtained data sets were executed by employing a decision tree model (J48), where training and validation were carried out by an iterative process. It was established, as expected, that concentration is the highest rank parameter. This is because concentration parameter provides the highest information gain with respect to toxicity. The second-rank parameter emerged to be either the compound type (Co-ions or Co-NPs) or the cell model, depending on the concentration range. The third and the lowest rank in the model was exposure duration. The hierarchy of cell sensitivity toward cobalt ions was found to obey the following sequence of cell lines: A549 > MDCK > NCIH441 > Caco-2 > HepG2 > dendritic cells (DCs), with A549 being the most sensitive cell line and primary DCs were the least sensitive ones. However, a different hierarchy pattern emerged for Co-NPs: A549 5 MDCK 5 NCIH441 5 Caco-2 > DCs > HepG2. The overall findings are in line with the hypothesis that the toxic effects of aggregated cobalt NPs are mainly due to cobalt ion dissolution from the aggregated NPs.
X-Ray Spectrometry, 2013
Synchrotron radiation (SR) X-ray microscopy combined with X-ray fluorescence (XRF) microspectrosc... more Synchrotron radiation (SR) X-ray microscopy combined with X-ray fluorescence (XRF) microspectroscopy provides unique information that have pushed the frontiers of biological research, particularly when investigating intracellular mechanisms. This work reports an SR-XRF microspectroscopy investigation on the distribution and the potential toxicity of Fe 2 O 3 and CoFe 2 O 4 nanoparticles (NPs) in U87MG glioblastoma-astrocytoma cells. The U87MG cells exposed to NPs concentrations ranging from 5 to 250 mg/ml for 24 h were analyzed in order to monitor both morphological and chemical changes. The SR-XRF maps complemented with XRM absorption and phase contrast images have revealed different intracellular distribution patterns for the two nanoparticles types allowing different mechanism of toxicity to be deduced.
Toxicological Sciences, 2009
Sulfur mustard (SM) is a strong alkylating agent. Inhalation of SM causes acute lung injury accom... more Sulfur mustard (SM) is a strong alkylating agent. Inhalation of SM causes acute lung injury accompanied by severe disruption of the airway barrier. In our study, we tested the acute effects after mustard exposure in an in vitro coculture bronchial model of the proximal barrier. To achieve this, we seeded normal human bronchial epithelial explant-outgrowth cells (HBEC) together with lung fibroblasts as a bilayer on filter plates and exposed the bronchial model after 31 days of differentiation to various concentrations of SM (30, 100, 300, and 500 microM). The HBEC formed confluent layers, expressing functional tight junctions as measured by transepithelial electrical resistance (TER). Mucus production and cilia formation reappeared in the coculture model. TER was measured after 2 and 24 h following treatment. Depending on the different concentrations, TER decreased in the first 2 h up to 55% of the control at the highest concentration. After 24 h, TER seemed to recover because at concentrations up to 300 microM values were equal to the control. SM induced a widening of intercellular spaces and a loss in cell-matrix adhesion. Mucus production increased with the result that cilia ceased to beat. Changes in the proinflammatory cytokines interleukin (IL)-6 and IL-8 were also observed. Apoptotic markers such as cytochrome c, p53, Fas-associated protein with death domain, and procaspase-3 were significantly induced at concentrations of less than 100 microM. In summary, SM induces morphological and biochemical changes that reflect pathological effects of SM injury in vivo. It is hoped to use this coculture model to understand further the pathogenesis of SM-induced barrier injury and to search for novel approaches in SM therapy.
Toxicological Sciences, 2011
The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared ... more The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared with those of cobalt ions (Co-ions) using six different cell lines representing lung, liver, kidney, intestine, and the immune system. Dose-response curves were studied in the concentration range of 0.05-1.0mM, employing 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide test, neutral red, and Alamar blue as end point assays following exposures for 48 and 72 h. Data analysis and predictive modeling of the obtained data sets were executed by employing a decision tree model (J48), where training and validation were carried out by an iterative process. It was established, as expected, that concentration is the highest rank parameter. This is because concentration parameter provides the highest information gain with respect to toxicity. The second-rank parameter emerged to be either the compound type (Co-ions or Co-NPs) or the cell model, depending on the concentration range. The third and the lowest rank in the model was exposure duration. The hierarchy of cell sensitivity toward cobalt ions was found to obey the following sequence of cell lines: A549 > MDCK > NCIH441 > Caco-2 > HepG2 > dendritic cells (DCs), with A549 being the most sensitive cell line and primary DCs were the least sensitive ones. However, a different hierarchy pattern emerged for Co-NPs: A549 5 MDCK 5 NCIH441 5 Caco-2 > DCs > HepG2. The overall findings are in line with the hypothesis that the toxic effects of aggregated cobalt NPs are mainly due to cobalt ion dissolution from the aggregated NPs.
Nanotoxicology, 2013
An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI... more An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI-H441 with endothelial human cell line ISO-HAS1 was used to evaluate the effects of amorphous silicon dioxide nanoparticles (SiNPs), in the presence or absence of THP-1 cells (monocytes). SiNPs exposure induced production of proinflammatory cytokine and oxidative stress. A high release of TNF-a and IL-8 by epithelial/endothelial cells, potentiated in the presence of THP-1 cells could contribute to the observed downregulation of surfactant proteins A mRNA expression resulting in the damage of the alveolar barrier. The obtained results suggested that in vitro approach can be used to study pulmonary toxicity as long as the applied in vitro model mimics closely the complexity of in vivo situation. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. Pulmonary toxicity, nanoparticles Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. Pulmonary toxicity, nanoparticles Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only.
Nanotoxicology, 2013
Despite human gastrointestinal exposure to nanoparticles (NPs), data on NPs toxicity in intestina... more Despite human gastrointestinal exposure to nanoparticles (NPs), data on NPs toxicity in intestinal cells are quite scanty. In this study we evaluated the toxicity induced by zinc oxide (ZnO) and titanium dioxide (TiO 2 ) NPs on Caco-2 cells. Only ZnO NPs produced significant cytotoxicity, evaluated by two different assays. The presence of foetal calf serum in culture medium significantly reduced ZnO NPs toxicity as well as ion leakage and NP-cell interaction. The two NPs increased the intracellular amount of reactive oxygen species (ROS) after 6 h treatment. However, only ZnO NPs increased ROS and induced IL-8 release both after 6 and 24 h. Experimental data indicate a main role of chemical composition and solubility in ZnO NPs toxicity. Moreover our results suggest a key role of oxidative stress in ZnO NPs cytotoxicity induction related both to ion leakage and to cell interaction with NPs in serum-free medium. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 11/28/12 For personal use only. I. De Angelis et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 11/28/12 For personal use only. ZnO and TiO 2 NPs toxicological comparative study Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 11/28/12 For personal use only.
Nanomedicine, 2014
Aim: Targeted biocompatible nanoplatforms presenting multiple therapeutic functions have great po... more Aim: Targeted biocompatible nanoplatforms presenting multiple therapeutic functions have great potential for the treatment of cancer. Materials & methods: Multifunctional nanocomposites formed by polymeric nanoparticles (PNPs) containing two cytotoxic agents -the drug alisertib and silver nanoparticles -were synthesized. These PNPs have been conjugated with a chlorotoxin, an active targeting 36-amino acid-long peptide that specifically binds to MMP-2, a receptor overexpressed by brain cancer cells. Results:
Methods in Pharmacology and Toxicology, 2014
Particle and fibre toxicology, 2016
Poorly soluble cobalt (II, III) oxide particles (Co3O4P) are believed to induce in vitro cytotoxi... more Poorly soluble cobalt (II, III) oxide particles (Co3O4P) are believed to induce in vitro cytotoxic effects via a Trojan-horse mechanism. Once internalized into lysosomal and acidic intracellular compartments, Co3O4P slowly release a low amount of cobalt ions (Co(2+)) that impair the viability of in vitro cultures. In this study, we focused on the genotoxic potential of Co3O4P by performing a comprehensive investigation of the DNA damage exerted in BEAS-2B human bronchial epithelial cells. Our results demonstrate that poorly soluble Co3O4P enhanced the formation of micronuclei in binucleated cells. Moreover, by comet assay we showed that Co3O4P induced primary and oxidative DNA damage, and by scoring the formation of γ-H2Ax foci, we demonstrated that Co3O4P also generated double DNA strand breaks. By comparing the effects exerted by poorly soluble Co3O4P with those obtained in the presence of soluble cobalt chloride (CoCl2), we demonstrated that the genotoxic effects of Co3O4P are no...
ACS Applied Materials & Interfaces, 2016
Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale archit... more Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin films of microphase-separated polyolefin/polyether blends. This is achieved by directing (-CH2-)100 and (-CH2-CH2-O-)25 oligomer fluxes produced by vacuum thermal decomposition of poly(ethylene) and poly(ethylene oxide) onto silicon substrates through the zone of the glow discharge. The strategy enables mixing of thermodynamically incompatible macromolecules at the molecular level, whereas electron-impact-initiated radicals serve as cross-linkers to arrest the subsequent phase separation at the nanoscale. The mechanism of the phase separation as well as the morphology of the films is found to depend on the ratio between the oligomeric fluxes. For polyolefin-rich mixtures, polyether molecules self-organize by nucleation and growth into spherical domains with average height of 22 nm and average diameter of 170 nm. For equinumerous fluxes and for mixtures with the prevalence of polyethers, spinodal decomposition is detected that results in the formation of bicontinuous structures with the characteristic domain size and spacing ranging between 5 × 10(1) -7 × 10(1) nm and 3 × 10(2)-4 × 10(2) nm, respectively. The method is shown to produce films with tunable wettability and biologically nonfouling properties.
European Journal of Pharmaceutics and Biopharmaceutics, 2009
Airway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) a... more Airway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) and adherens junctions (AJ) play a key role in maintaining barrier functions, and are responsible for the selective transport of various substances through the paracellular pathway. In this study we compared a bronchial cell line (16HBE14o-) and primary bronchial cells (HBEC), both cocultivated with the fibroblast cell line Wi-38, with respect to their structural differentiation and their reaction to cytokine stimulation. HBEC formed a pseudostratified epithelial layer and expressed TJ and AJ proteins after 2 weeks in coculture. Mucus-producing and ciliated cells were found within 24 days. Additionally, a beating activity of the ciliated HBEC (14-19 Hz) could be detected. 16HBE14o-in coculture showed a multilayered growth without differentiation to a pseudostratified airway epithelium. Simultaneous exposure to TNF-a-and IFN-c-induced significant changes in barrier function and paracellular permeability in the cocultures of HBEC/Wi-38 but not in the 16HBE14o-/Wi-38. In summary, HBEC in coculture mimic the structure of native polarized bronchial epithelium showing basal, mucus-producing and ciliated cells. Our system provides an opportunity to examine the factors that influence barrier and mucociliary function of bronchial epithelium within a time frame of 3 weeks up to 3 months in an in vivo-like differentiated model.
Mutagenesis, Jan 7, 2016
The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nan... more The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nanomaterials (ENM) through the surface modification in order to prevent possible health effects. In this frame, a number of nanoparticles (NP) have been selected, among which zirconium (ZrO2) and titanium (TiO2) dioxide. In this study, we tested ZrO2NP and TiO2NP either in their pristine (uncoated) form, or modified with citrate and/or silica on their surface. As benchmark material, Aeroxide® P25 was used. We assessed cytotoxicity, genotoxicity and induction of morphological neoplastic transformation of NP by using a panel ofin vitroassays in an established mammalian cell line of murine origin (Balb/3T3). Cell viability was evaluated by means of colony-forming efficiency assay (CFE). Genotoxicity was investigated by cytokinesis-block micronucleus cytome assay (CBMN cyt) and comet assay, and by the use of the restriction enzymes EndoIII and Fpg, oxidatively damaged DNA was detected; finally...
Toxicology in Vitro, 2015
The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the... more The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.
Particle and Fibre Toxicology, 2012
Background: The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and ge... more Background: The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (10, 11 nm, 25 nm), to the presence of sodium citrate on the particles' surface or they are due to a varying degree of internalization of the AuNPs. Since two cell types are present in the major barriers to the outside in the human body, we have also included endothelial cells from the vasculature and blood brain barrier. Results: Transmission electron microscopy demonstrates that the internalized gold nanoparticles are located within vesicles. Increased cytotoxicity was observed after exposure to AuNPs and was found to be concentrationdependent. In addition, cell viability and the proliferation of both endothelial cells decreased after exposure to gold nanoparticles, especially at high concentrations. Moreover, in contrast to the size of the particles (10 nm, 11 nm, 25 nm), the presence of sodium citrate on the nanoparticle surface appeared to enhance these effects. The effects on microvascular endothelial cells from blood vessels were slightly enhanced compared to the effects on brain-derived endothelial cells. A quantification of AuNPs within cells by ICP-AES showed that epithelial cells internalized a higher quantity of AuNPs compared to endothelial cells and that the quantity of uptake is not correlated with the amount of sodium citrate on the nanoparticles' surface.
Particle and Fibre Toxicology, 2009
Background: During the last years engineered nanoparticles (NPs) have been extensively used in di... more Background: During the last years engineered nanoparticles (NPs) have been extensively used in different technologies and consequently many questions have arisen about the risk and the impact on human health following exposure to nanoparticles. Nevertheless, at present knowledge about the cytotoxicity induced by NPs is still largely incomplete. In this context, we have investigated the cytotoxicity induced by gold nanoparticles (AuNPs), which differed in size and purification grade (presence or absence of sodium citrate residues on the particle surface) in vitro, in the human alveolar type-II (ATII)-like cell lines A549 and NCIH441.
Methods in Pharmacology and Toxicology, 2014
Environmental and Molecular Mutagenesis, 2014
International Journal of Nanomedicine, 2014
Particle and Fibre Toxicology, 2013
The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared ... more The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared with those of cobalt ions (Co-ions) using six different cell lines representing lung, liver, kidney, intestine, and the immune system. Dose-response curves were studied in the concentration range of 0.05-1.0mM, employing 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide test, neutral red, and Alamar blue as end point assays following exposures for 48 and 72 h. Data analysis and predictive modeling of the obtained data sets were executed by employing a decision tree model (J48), where training and validation were carried out by an iterative process. It was established, as expected, that concentration is the highest rank parameter. This is because concentration parameter provides the highest information gain with respect to toxicity. The second-rank parameter emerged to be either the compound type (Co-ions or Co-NPs) or the cell model, depending on the concentration range. The third and the lowest rank in the model was exposure duration. The hierarchy of cell sensitivity toward cobalt ions was found to obey the following sequence of cell lines: A549 > MDCK > NCIH441 > Caco-2 > HepG2 > dendritic cells (DCs), with A549 being the most sensitive cell line and primary DCs were the least sensitive ones. However, a different hierarchy pattern emerged for Co-NPs: A549 5 MDCK 5 NCIH441 5 Caco-2 > DCs > HepG2. The overall findings are in line with the hypothesis that the toxic effects of aggregated cobalt NPs are mainly due to cobalt ion dissolution from the aggregated NPs.
X-Ray Spectrometry, 2013
Synchrotron radiation (SR) X-ray microscopy combined with X-ray fluorescence (XRF) microspectrosc... more Synchrotron radiation (SR) X-ray microscopy combined with X-ray fluorescence (XRF) microspectroscopy provides unique information that have pushed the frontiers of biological research, particularly when investigating intracellular mechanisms. This work reports an SR-XRF microspectroscopy investigation on the distribution and the potential toxicity of Fe 2 O 3 and CoFe 2 O 4 nanoparticles (NPs) in U87MG glioblastoma-astrocytoma cells. The U87MG cells exposed to NPs concentrations ranging from 5 to 250 mg/ml for 24 h were analyzed in order to monitor both morphological and chemical changes. The SR-XRF maps complemented with XRM absorption and phase contrast images have revealed different intracellular distribution patterns for the two nanoparticles types allowing different mechanism of toxicity to be deduced.
Toxicological Sciences, 2009
Sulfur mustard (SM) is a strong alkylating agent. Inhalation of SM causes acute lung injury accom... more Sulfur mustard (SM) is a strong alkylating agent. Inhalation of SM causes acute lung injury accompanied by severe disruption of the airway barrier. In our study, we tested the acute effects after mustard exposure in an in vitro coculture bronchial model of the proximal barrier. To achieve this, we seeded normal human bronchial epithelial explant-outgrowth cells (HBEC) together with lung fibroblasts as a bilayer on filter plates and exposed the bronchial model after 31 days of differentiation to various concentrations of SM (30, 100, 300, and 500 microM). The HBEC formed confluent layers, expressing functional tight junctions as measured by transepithelial electrical resistance (TER). Mucus production and cilia formation reappeared in the coculture model. TER was measured after 2 and 24 h following treatment. Depending on the different concentrations, TER decreased in the first 2 h up to 55% of the control at the highest concentration. After 24 h, TER seemed to recover because at concentrations up to 300 microM values were equal to the control. SM induced a widening of intercellular spaces and a loss in cell-matrix adhesion. Mucus production increased with the result that cilia ceased to beat. Changes in the proinflammatory cytokines interleukin (IL)-6 and IL-8 were also observed. Apoptotic markers such as cytochrome c, p53, Fas-associated protein with death domain, and procaspase-3 were significantly induced at concentrations of less than 100 microM. In summary, SM induces morphological and biochemical changes that reflect pathological effects of SM injury in vivo. It is hoped to use this coculture model to understand further the pathogenesis of SM-induced barrier injury and to search for novel approaches in SM therapy.
Toxicological Sciences, 2011
The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared ... more The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared with those of cobalt ions (Co-ions) using six different cell lines representing lung, liver, kidney, intestine, and the immune system. Dose-response curves were studied in the concentration range of 0.05-1.0mM, employing 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide test, neutral red, and Alamar blue as end point assays following exposures for 48 and 72 h. Data analysis and predictive modeling of the obtained data sets were executed by employing a decision tree model (J48), where training and validation were carried out by an iterative process. It was established, as expected, that concentration is the highest rank parameter. This is because concentration parameter provides the highest information gain with respect to toxicity. The second-rank parameter emerged to be either the compound type (Co-ions or Co-NPs) or the cell model, depending on the concentration range. The third and the lowest rank in the model was exposure duration. The hierarchy of cell sensitivity toward cobalt ions was found to obey the following sequence of cell lines: A549 > MDCK > NCIH441 > Caco-2 > HepG2 > dendritic cells (DCs), with A549 being the most sensitive cell line and primary DCs were the least sensitive ones. However, a different hierarchy pattern emerged for Co-NPs: A549 5 MDCK 5 NCIH441 5 Caco-2 > DCs > HepG2. The overall findings are in line with the hypothesis that the toxic effects of aggregated cobalt NPs are mainly due to cobalt ion dissolution from the aggregated NPs.
Nanotoxicology, 2013
An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI... more An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI-H441 with endothelial human cell line ISO-HAS1 was used to evaluate the effects of amorphous silicon dioxide nanoparticles (SiNPs), in the presence or absence of THP-1 cells (monocytes). SiNPs exposure induced production of proinflammatory cytokine and oxidative stress. A high release of TNF-a and IL-8 by epithelial/endothelial cells, potentiated in the presence of THP-1 cells could contribute to the observed downregulation of surfactant proteins A mRNA expression resulting in the damage of the alveolar barrier. The obtained results suggested that in vitro approach can be used to study pulmonary toxicity as long as the applied in vitro model mimics closely the complexity of in vivo situation. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. Pulmonary toxicity, nanoparticles Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. Pulmonary toxicity, nanoparticles Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only. L. R. Farcal et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 08/28/12 For personal use only.
Nanotoxicology, 2013
Despite human gastrointestinal exposure to nanoparticles (NPs), data on NPs toxicity in intestina... more Despite human gastrointestinal exposure to nanoparticles (NPs), data on NPs toxicity in intestinal cells are quite scanty. In this study we evaluated the toxicity induced by zinc oxide (ZnO) and titanium dioxide (TiO 2 ) NPs on Caco-2 cells. Only ZnO NPs produced significant cytotoxicity, evaluated by two different assays. The presence of foetal calf serum in culture medium significantly reduced ZnO NPs toxicity as well as ion leakage and NP-cell interaction. The two NPs increased the intracellular amount of reactive oxygen species (ROS) after 6 h treatment. However, only ZnO NPs increased ROS and induced IL-8 release both after 6 and 24 h. Experimental data indicate a main role of chemical composition and solubility in ZnO NPs toxicity. Moreover our results suggest a key role of oxidative stress in ZnO NPs cytotoxicity induction related both to ion leakage and to cell interaction with NPs in serum-free medium. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 11/28/12 For personal use only. I. De Angelis et al. Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 11/28/12 For personal use only. ZnO and TiO 2 NPs toxicological comparative study Nanotoxicology Downloaded from informahealthcare.com by Commission European Comm on 11/28/12 For personal use only.
Nanomedicine, 2014
Aim: Targeted biocompatible nanoplatforms presenting multiple therapeutic functions have great po... more Aim: Targeted biocompatible nanoplatforms presenting multiple therapeutic functions have great potential for the treatment of cancer. Materials & methods: Multifunctional nanocomposites formed by polymeric nanoparticles (PNPs) containing two cytotoxic agents -the drug alisertib and silver nanoparticles -were synthesized. These PNPs have been conjugated with a chlorotoxin, an active targeting 36-amino acid-long peptide that specifically binds to MMP-2, a receptor overexpressed by brain cancer cells. Results: