perrine malzac | Aix-Marseille Université (original) (raw)
Papers by perrine malzac
Charcot-Marie-Tooth (CMT) disease is a typical example of a clinically and genetically heterogene... more Charcot-Marie-Tooth (CMT) disease is a typical example of a clinically and genetically heterogeneous disorder and, in most cases, is dominantly inherited and caused by a 1.5 megabase duplication on chromosome 17p11.2 containing the PMP22 gene. This is a non-lethal disease with a wide spectrum of severity, from asymptomatism to severe motor and sensory disability. Unpredictable degree of disability is usually the reason why prenatal diagnosis is required and must be addressed. Molecular procedures such as the use of polymorphic non microsatellite STRs, allowing very fast and reliable results even when requiring a gene dosage interpretation are now available and have been recently validated in post-natal diagnosis. Our results indicate that this approach is also the best-adapted method in case of prenatal diagnosis. Nevertheless, ethical considerations raised by prenatal diagnosis in CMT and more generally in non-lethal disorders remain to be actively considered. Here, we present our experience in genetic counselling, and address the psychological issues for 7 CMT at risk pregnancies. In five cases, a CMT1A duplication was evidenced; pregnancy was terminated in four of these cases and the parents from one affected foetus decided to pursue the pregnancy.
Nature Genetics, 1997
Prader-Willi syndrome (PWS) is a neurogenetic disorder that results from the absence of a normal ... more Prader-Willi syndrome (PWS) is a neurogenetic disorder that results from the absence of a normal paternal contribution to the 15q11-13 region. The clinical manifestations of PWS are a transient severe hypotonia in the newborn period, with mental retardation, hypogonadism and obesity observed later in development. Five transcripts with exclusive expression from the paternal allele have been isolated, but none of these has been shown to be involved in PWS. In this study, we report the isolation and characterization of NDN, a new human imprinted gene. NDN is exclusively expressed from the paternal allele in the tissues analysed and is located in the PWS region. It encodes a putative protein homologous to the mouse brain-specific NECDIN protein, NDN; as in mouse, expression in brain is restricted to post-mitotic neurons. NDN displays several characteristics of an imprinted locus, including allelic DNA methylation and asynchronous DNA replication. A complete lack of NDN expression in PWS brain and fibroblasts indicates that the gene is expressed exclusively from the paternal allele in these tissues and suggests a possible role of this new gene in PWS.
European Journal of Human Genetics, 1999
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contr... more Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contribution to chromosome 15q11–q13. There are four classes of AS according to molecular or cytogenetic status: maternal microdeletion of 15q11–q13 (approximately 70% of AS patients); uniparental disomy (UPD); defects in a putative imprinting centre (IM); the fourth includes 20–30% of AS individuals with biparental inheritance and
Human Molecular Genetics, 1994
European journal of …, 1999
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contr... more Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contribution to chromosome 15q11-q13. There are four classes of AS according to molecular or cytogenetic status: maternal microdeletion of 15q11-q13 (approximately 70% of AS ...
American Journal of Medical Genetics, 2000
The urofacial syndrome (UFS) or Ochoa syndrome has been reported as a rare autosomal recessive di... more The urofacial syndrome (UFS) or Ochoa syndrome has been reported as a rare autosomal recessive disorder comprising a uropathy and facial abnormalities. The gene was mapped on chromosome region 10q23-q24. We report the first European cases of UFS. Haplotype analyses in our French family were compared with those previously described in patients from Columbia and America (literature data). The results are compatible with the same localization of the critical region and favor the hypothesis of genetic homogeneity. Am. J. Med. Genet. 95: 10-12, 2000.
American Journal of Medical Genetics, 1998
The American Journal of Human Genetics, 1998
Angelman syndrome (AS) is caused by chromosome 15q11-q13 deletions of maternal origin, by paterna... more Angelman syndrome (AS) is caused by chromosome 15q11-q13 deletions of maternal origin, by paternal uniparental disomy (UPD) 15, by imprinting defects, and by mutations in the UBE3A gene. UBE3A encodes a ubiquitin-protein ligase and shows brain-specific imprinting. Here we describe UBE3A coding-region mutations detected by SSCP analysis in 13 AS individuals or families. Two identical de novo 5-bp duplications in exon 16 were found. Among the other 11 unique mutations, 8 were small deletions or insertions predicted to cause frameshifts, 1 was a mutation to a stop codon, 1 was a missense mutation, and 1 was predicted to cause insertion of an isoleucine in the hect domain of the UBE3A protein, which functions in E2 binding and ubiquitin transfer. Eight of the cases were familial, and five were sporadic. In two familial cases and one sporadic case, mosaicism for UBE3A mutations was detected: in the mother of three AS sons, in the maternal grandfather of two AS first cousins, and in the mother of an AS daughter. The frequencies with which we detected mutations were 5 (14%) of 35 in sporadic cases and 8 (80%) of 10 in familial cases.
Human Mutation, 2000
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratori... more We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Charcot-Marie-Tooth (CMT) disease is a typical example of a clinically and genetically heterogene... more Charcot-Marie-Tooth (CMT) disease is a typical example of a clinically and genetically heterogeneous disorder and, in most cases, is dominantly inherited and caused by a 1.5 megabase duplication on chromosome 17p11.2 containing the PMP22 gene. This is a non-lethal disease with a wide spectrum of severity, from asymptomatism to severe motor and sensory disability. Unpredictable degree of disability is usually the reason why prenatal diagnosis is required and must be addressed. Molecular procedures such as the use of polymorphic non microsatellite STRs, allowing very fast and reliable results even when requiring a gene dosage interpretation are now available and have been recently validated in post-natal diagnosis. Our results indicate that this approach is also the best-adapted method in case of prenatal diagnosis. Nevertheless, ethical considerations raised by prenatal diagnosis in CMT and more generally in non-lethal disorders remain to be actively considered. Here, we present our experience in genetic counselling, and address the psychological issues for 7 CMT at risk pregnancies. In five cases, a CMT1A duplication was evidenced; pregnancy was terminated in four of these cases and the parents from one affected foetus decided to pursue the pregnancy.
Nature Genetics, 1997
Prader-Willi syndrome (PWS) is a neurogenetic disorder that results from the absence of a normal ... more Prader-Willi syndrome (PWS) is a neurogenetic disorder that results from the absence of a normal paternal contribution to the 15q11-13 region. The clinical manifestations of PWS are a transient severe hypotonia in the newborn period, with mental retardation, hypogonadism and obesity observed later in development. Five transcripts with exclusive expression from the paternal allele have been isolated, but none of these has been shown to be involved in PWS. In this study, we report the isolation and characterization of NDN, a new human imprinted gene. NDN is exclusively expressed from the paternal allele in the tissues analysed and is located in the PWS region. It encodes a putative protein homologous to the mouse brain-specific NECDIN protein, NDN; as in mouse, expression in brain is restricted to post-mitotic neurons. NDN displays several characteristics of an imprinted locus, including allelic DNA methylation and asynchronous DNA replication. A complete lack of NDN expression in PWS brain and fibroblasts indicates that the gene is expressed exclusively from the paternal allele in these tissues and suggests a possible role of this new gene in PWS.
European Journal of Human Genetics, 1999
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contr... more Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contribution to chromosome 15q11–q13. There are four classes of AS according to molecular or cytogenetic status: maternal microdeletion of 15q11–q13 (approximately 70% of AS patients); uniparental disomy (UPD); defects in a putative imprinting centre (IM); the fourth includes 20–30% of AS individuals with biparental inheritance and
Human Molecular Genetics, 1994
European journal of …, 1999
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contr... more Angelman syndrome (AS) is a neurodevelopmental disorder caused by the absence of a maternal contribution to chromosome 15q11-q13. There are four classes of AS according to molecular or cytogenetic status: maternal microdeletion of 15q11-q13 (approximately 70% of AS ...
American Journal of Medical Genetics, 2000
The urofacial syndrome (UFS) or Ochoa syndrome has been reported as a rare autosomal recessive di... more The urofacial syndrome (UFS) or Ochoa syndrome has been reported as a rare autosomal recessive disorder comprising a uropathy and facial abnormalities. The gene was mapped on chromosome region 10q23-q24. We report the first European cases of UFS. Haplotype analyses in our French family were compared with those previously described in patients from Columbia and America (literature data). The results are compatible with the same localization of the critical region and favor the hypothesis of genetic homogeneity. Am. J. Med. Genet. 95: 10-12, 2000.
American Journal of Medical Genetics, 1998
The American Journal of Human Genetics, 1998
Angelman syndrome (AS) is caused by chromosome 15q11-q13 deletions of maternal origin, by paterna... more Angelman syndrome (AS) is caused by chromosome 15q11-q13 deletions of maternal origin, by paternal uniparental disomy (UPD) 15, by imprinting defects, and by mutations in the UBE3A gene. UBE3A encodes a ubiquitin-protein ligase and shows brain-specific imprinting. Here we describe UBE3A coding-region mutations detected by SSCP analysis in 13 AS individuals or families. Two identical de novo 5-bp duplications in exon 16 were found. Among the other 11 unique mutations, 8 were small deletions or insertions predicted to cause frameshifts, 1 was a mutation to a stop codon, 1 was a missense mutation, and 1 was predicted to cause insertion of an isoleucine in the hect domain of the UBE3A protein, which functions in E2 binding and ubiquitin transfer. Eight of the cases were familial, and five were sporadic. In two familial cases and one sporadic case, mosaicism for UBE3A mutations was detected: in the mother of three AS sons, in the maternal grandfather of two AS first cousins, and in the mother of an AS daughter. The frequencies with which we detected mutations were 5 (14%) of 35 in sporadic cases and 8 (80%) of 10 in familial cases.
Human Mutation, 2000
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratori... more We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.