Input/output — pandas 2.2.3 documentation (original) (raw)

Pickling#

read_pickle(filepath_or_buffer[, ...]) Load pickled pandas object (or any object) from file.
DataFrame.to_pickle(path, *[, compression, ...]) Pickle (serialize) object to file.

Flat file#

read_table(filepath_or_buffer, *[, sep, ...]) Read general delimited file into DataFrame.
read_csv(filepath_or_buffer, *[, sep, ...]) Read a comma-separated values (csv) file into DataFrame.
DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file.
read_fwf(filepath_or_buffer, *[, colspecs, ...]) Read a table of fixed-width formatted lines into DataFrame.

Clipboard#

Excel#

read_excel(io[, sheet_name, header, names, ...]) Read an Excel file into a pandas DataFrame.
DataFrame.to_excel(excel_writer, *[, ...]) Write object to an Excel sheet.
ExcelFile(path_or_buffer[, engine, ...]) Class for parsing tabular Excel sheets into DataFrame objects.
ExcelFile.book
ExcelFile.sheet_names
ExcelFile.parse([sheet_name, header, names, ...]) Parse specified sheet(s) into a DataFrame.
Styler.to_excel(excel_writer[, sheet_name, ...]) Write Styler to an Excel sheet.
ExcelWriter(path[, engine, date_format, ...]) Class for writing DataFrame objects into excel sheets.

JSON#

read_json(path_or_buf, *[, orient, typ, ...]) Convert a JSON string to pandas object.
json_normalize(data[, record_path, meta, ...]) Normalize semi-structured JSON data into a flat table.
DataFrame.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string.

HTML#

read_html(io, *[, match, flavor, header, ...]) Read HTML tables into a list of DataFrame objects.
DataFrame.to_html([buf, columns, col_space, ...]) Render a DataFrame as an HTML table.
Styler.to_html([buf, table_uuid, ...]) Write Styler to a file, buffer or string in HTML-CSS format.

XML#

read_xml(path_or_buffer, *[, xpath, ...]) Read XML document into a DataFrame object.
DataFrame.to_xml([path_or_buffer, index, ...]) Render a DataFrame to an XML document.

Latex#

DataFrame.to_latex([buf, columns, header, ...]) Render object to a LaTeX tabular, longtable, or nested table.
Styler.to_latex([buf, column_format, ...]) Write Styler to a file, buffer or string in LaTeX format.

HDFStore: PyTables (HDF5)#

read_hdf(path_or_buf[, key, mode, errors, ...]) Read from the store, close it if we opened it.
HDFStore.put(key, value[, format, index, ...]) Store object in HDFStore.
HDFStore.append(key, value[, format, axes, ...]) Append to Table in file.
HDFStore.get(key) Retrieve pandas object stored in file.
HDFStore.select(key[, where, start, stop, ...]) Retrieve pandas object stored in file, optionally based on where criteria.
HDFStore.info() Print detailed information on the store.
HDFStore.keys([include]) Return a list of keys corresponding to objects stored in HDFStore.
HDFStore.groups() Return a list of all the top-level nodes.
HDFStore.walk([where]) Walk the pytables group hierarchy for pandas objects.

Warning

One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing.

Feather#

read_feather(path[, columns, use_threads, ...]) Load a feather-format object from the file path.
DataFrame.to_feather(path, **kwargs) Write a DataFrame to the binary Feather format.

Parquet#

read_parquet(path[, engine, columns, ...]) Load a parquet object from the file path, returning a DataFrame.
DataFrame.to_parquet([path, engine, ...]) Write a DataFrame to the binary parquet format.

ORC#

read_orc(path[, columns, dtype_backend, ...]) Load an ORC object from the file path, returning a DataFrame.
DataFrame.to_orc([path, engine, index, ...]) Write a DataFrame to the ORC format.

SAS#

read_sas(filepath_or_buffer, *[, format, ...]) Read SAS files stored as either XPORT or SAS7BDAT format files.

SPSS#

read_spss(path[, usecols, ...]) Load an SPSS file from the file path, returning a DataFrame.

SQL#

read_sql_table(table_name, con[, schema, ...]) Read SQL database table into a DataFrame.
read_sql_query(sql, con[, index_col, ...]) Read SQL query into a DataFrame.
read_sql(sql, con[, index_col, ...]) Read SQL query or database table into a DataFrame.
DataFrame.to_sql(name, con, *[, schema, ...]) Write records stored in a DataFrame to a SQL database.

Google BigQuery#

read_gbq(query[, project_id, index_col, ...]) (DEPRECATED) Load data from Google BigQuery.

STATA#

read_stata(filepath_or_buffer, *[, ...]) Read Stata file into DataFrame.
DataFrame.to_stata(path, *[, convert_dates, ...]) Export DataFrame object to Stata dta format.