Ourania Beniata | University of Thessaly (original) (raw)

Uploads

Papers by Ourania Beniata

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, Jul 1, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, Jul 1, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, Jul 1, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, Jul 1, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, Jul 1, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Research paper thumbnail of Harnessing the immune system to improve cancer therapy

Annals of Translational Medicine, Jul 1, 2016

Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. D... more Cancer immunotherapy uses the immune system and its components to mount an anti-tumor response. During the last decade, it has evolved from a promising therapy option to a robust clinical reality. Many immunotherapeutic modalities are already approved by the Food and Drug Administration (FDA) for treating cancer patients and many others are in the pipeline for approval as standalone or combinatorial therapeutic interventions, several also combined with standard treatments in clinical studies. The two main axes of cancer immunotherapeutics refer to passive and active treatments. Prominent examples of passive immunotherapy include administration of monoclonal antibodies and cytokines and adoptive cell transfer of ex vivo "educated" immune cells. Active immunotherapy refers, among others, to anti-cancer vaccines [peptide, dendritic cell (DC)-based and allogeneic whole cell vaccines], immune checkpoint inhibitors and oncolytic viruses, whereas new approaches that can further enhance anti-cancer immune responses are also widely explored. Herein, we present the most popular cancer immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials. To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.