Gustavo Abratti | Pioneer hibred (original) (raw)
Uploads
Papers by Gustavo Abratti
The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosp... more The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosphate synthase (SPS) is reported for Synechocystis sp. strain PCC 6803, a unicellular non-nitrogen-fixing cyanobacterium. Comparisons of the deduced amino acid sequence and some relevant biochemical properties of the enzyme with those of plant SPSs revealed important differences in the N-terminal and UDP-glucose binding site regions, substrate specificities, molecular masses, subunit compositions, and regulatory properties.
A novel fertility restoration factor for the PET1 cytoplasm, coming from the public line RHA340, ... more A novel fertility restoration factor for the PET1 cytoplasm, coming from the public line RHA340, was evaluated together with resistance genes to downy mildew (Plasmopara halstedii) Pl8 and black rust (Puccinia helianthi) in a mapping population segregating for the three characters. Linkage between the resistance genes and the fertility restoration was not detected, showing that the restoration factor present in the line RHA340 is different from Rf1. Bulk segregant analysis with microsatellite markers allowed to detect markers corresponding to linkage group 7, and this location was confirmed in the mapping population. A map was built showing the order and the distance of these loci.
Pest Management Science, 2017
BACKGROUND: Transgenic maize (Zea mays L.) event TC1507 (Herculex ® I insect protection), express... more BACKGROUND: Transgenic maize (Zea mays L.) event TC1507 (Herculex ® I insect protection), expressing Cry1F-endotoxin derived from Bacillus thuringiensis var. aizawai, was commercialized in 2003 in the Americas. Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) susceptibility to Cry1F was monitored annually across several regions in Argentina using diagnostic concentration bioassays. Reduced performance of TC1507 maize against S. frugiperda was reported in 2013. A resistant population was established in the laboratory and the dominance of Cry1F resistance was characterized. RESULTS: During 2012-2015, high-survivorship of several populations was observed in the resistance monitoring program. Reciprocal crosses of a Cry1F-resistant population with a Cry1F-susceptible population were evaluated to calculate effective dominance (D ML) based on mortality levels observed at 100 g/ml Cry1F. Two additional dominance levels (D LC and D EC) were calculated using lethal (LC 50) or effective concentration (EC 50) derived from concentration-response bioassays. Estimates indicated that Cry1F resistance in S. frugiperda in Argentina was either highly recessive (D ML = 0.005) or incompletely recessive (D LC < 0.26 and D EC < 0.19). CONCLUSION: This study is the first documented confirmation and characterization of S. frugiperda Cry1F field-evolved resistance in Argentina. The resistance to Cry1F in S. frugiperda populations collected in Argentina, is autosomal and incompletely recessive similar to the resistance reported in Brazil.
Frontiers in bioengineering and biotechnology, 2018
Evolution of resistance to control measures in insect populations is a natural process, and manag... more Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans and (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by...
TAG Theoretical and …, Jan 1, 2004
Wild biotypes of cultivated sunflower (Helianthus annuus L.) are weeds in corn (Zea mays L.), soy... more Wild biotypes of cultivated sunflower (Helianthus annuus L.) are weeds in corn (Zea mays L.), soybean (Glycine max L.), and other crops in North America, and are commonly controlled by applying acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Biotypes resistant to two classes of AHAS-inhibiting herbicides-imidazolinones (IMIs) or sulfonylureas (SUs) -have been discovered in wild sunflower populations (ANN-PUR and ANN-KAN) treated with imazethapyr or chlorsulfuron, respectively. The goals of the present study were to isolate AHAS genes from sunflower, identify mutations in AHAS genes conferring herbicide resistance in ANN-PUR and ANN-KAN, and develop tools for marker-assisted selection (MAS) of herbicide resistance genes in sunflower. Three AHAS genes (AHAS1, AHAS2, and AHAS3) were identified, cloned, and sequenced from herbicide-resistant (mutant) and -susceptible (wild type) genotypes. We identified 48 single-nucleotide polymorphisms (SNPs) in AHAS1, a single six-base pair insertiondeletion in AHAS2, and a single SNP in AHAS3. No DNA polymorphisms were found in AHAS2 among elite inbred lines. AHAS1 from imazethapyr-resistant inbreds harbored a C-to-T mutation in codon 205 (Arabidopsis thaliana codon nomenclature), conferring resistance to IMI herbicides, whereas AHAS1 from chlorsulfuron-resistant inbreds harbored a C-to-T mutation in codon 197, conferring resistance to SU herbicides. SNP and single-strand conformational polymorphism markers for AHAS1, AHAS2, and AHAS3 were developed and genetically mapped. AHAS1, AHAS2, and AHAS3 mapped to linkage groups 2 (AHAS3), 6 (AHAS2), and 9 (AHAS1). The C/T SNP in codon 205 of AHAS1 cosegregated with a partially dominant gene for resistance to IMI herbicides in two mutant × wild-type populations. The molecular breeding tools described herein create the basis for rapidly identifying new mutations in AHAS and performing MAS for herbicide resistance genes in sunflower.
Journal of …, Jan 1, 1998
The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosp... more The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosphate synthase (SPS) is reported for Synechocystis sp. strain PCC 6803, a unicellular non-nitrogen-fixing cyanobacterium. Comparisons of the deduced amino acid sequence and some relevant biochemical properties of the enzyme with those of plant SPSs revealed important differences in the N-terminal and UDP-glucose binding site regions, substrate specificities, molecular masses, subunit compositions, and regulatory properties.
TAG Theoretical and …, Jan 1, 2011
The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosp... more The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosphate synthase (SPS) is reported for Synechocystis sp. strain PCC 6803, a unicellular non-nitrogen-fixing cyanobacterium. Comparisons of the deduced amino acid sequence and some relevant biochemical properties of the enzyme with those of plant SPSs revealed important differences in the N-terminal and UDP-glucose binding site regions, substrate specificities, molecular masses, subunit compositions, and regulatory properties.
A novel fertility restoration factor for the PET1 cytoplasm, coming from the public line RHA340, ... more A novel fertility restoration factor for the PET1 cytoplasm, coming from the public line RHA340, was evaluated together with resistance genes to downy mildew (Plasmopara halstedii) Pl8 and black rust (Puccinia helianthi) in a mapping population segregating for the three characters. Linkage between the resistance genes and the fertility restoration was not detected, showing that the restoration factor present in the line RHA340 is different from Rf1. Bulk segregant analysis with microsatellite markers allowed to detect markers corresponding to linkage group 7, and this location was confirmed in the mapping population. A map was built showing the order and the distance of these loci.
Pest Management Science, 2017
BACKGROUND: Transgenic maize (Zea mays L.) event TC1507 (Herculex ® I insect protection), express... more BACKGROUND: Transgenic maize (Zea mays L.) event TC1507 (Herculex ® I insect protection), expressing Cry1F-endotoxin derived from Bacillus thuringiensis var. aizawai, was commercialized in 2003 in the Americas. Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) susceptibility to Cry1F was monitored annually across several regions in Argentina using diagnostic concentration bioassays. Reduced performance of TC1507 maize against S. frugiperda was reported in 2013. A resistant population was established in the laboratory and the dominance of Cry1F resistance was characterized. RESULTS: During 2012-2015, high-survivorship of several populations was observed in the resistance monitoring program. Reciprocal crosses of a Cry1F-resistant population with a Cry1F-susceptible population were evaluated to calculate effective dominance (D ML) based on mortality levels observed at 100 g/ml Cry1F. Two additional dominance levels (D LC and D EC) were calculated using lethal (LC 50) or effective concentration (EC 50) derived from concentration-response bioassays. Estimates indicated that Cry1F resistance in S. frugiperda in Argentina was either highly recessive (D ML = 0.005) or incompletely recessive (D LC < 0.26 and D EC < 0.19). CONCLUSION: This study is the first documented confirmation and characterization of S. frugiperda Cry1F field-evolved resistance in Argentina. The resistance to Cry1F in S. frugiperda populations collected in Argentina, is autosomal and incompletely recessive similar to the resistance reported in Brazil.
Frontiers in bioengineering and biotechnology, 2018
Evolution of resistance to control measures in insect populations is a natural process, and manag... more Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans and (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by...
TAG Theoretical and …, Jan 1, 2004
Wild biotypes of cultivated sunflower (Helianthus annuus L.) are weeds in corn (Zea mays L.), soy... more Wild biotypes of cultivated sunflower (Helianthus annuus L.) are weeds in corn (Zea mays L.), soybean (Glycine max L.), and other crops in North America, and are commonly controlled by applying acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Biotypes resistant to two classes of AHAS-inhibiting herbicides-imidazolinones (IMIs) or sulfonylureas (SUs) -have been discovered in wild sunflower populations (ANN-PUR and ANN-KAN) treated with imazethapyr or chlorsulfuron, respectively. The goals of the present study were to isolate AHAS genes from sunflower, identify mutations in AHAS genes conferring herbicide resistance in ANN-PUR and ANN-KAN, and develop tools for marker-assisted selection (MAS) of herbicide resistance genes in sunflower. Three AHAS genes (AHAS1, AHAS2, and AHAS3) were identified, cloned, and sequenced from herbicide-resistant (mutant) and -susceptible (wild type) genotypes. We identified 48 single-nucleotide polymorphisms (SNPs) in AHAS1, a single six-base pair insertiondeletion in AHAS2, and a single SNP in AHAS3. No DNA polymorphisms were found in AHAS2 among elite inbred lines. AHAS1 from imazethapyr-resistant inbreds harbored a C-to-T mutation in codon 205 (Arabidopsis thaliana codon nomenclature), conferring resistance to IMI herbicides, whereas AHAS1 from chlorsulfuron-resistant inbreds harbored a C-to-T mutation in codon 197, conferring resistance to SU herbicides. SNP and single-strand conformational polymorphism markers for AHAS1, AHAS2, and AHAS3 were developed and genetically mapped. AHAS1, AHAS2, and AHAS3 mapped to linkage groups 2 (AHAS3), 6 (AHAS2), and 9 (AHAS1). The C/T SNP in codon 205 of AHAS1 cosegregated with a partially dominant gene for resistance to IMI herbicides in two mutant × wild-type populations. The molecular breeding tools described herein create the basis for rapidly identifying new mutations in AHAS and performing MAS for herbicide resistance genes in sunflower.
Journal of …, Jan 1, 1998
The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosp... more The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosphate synthase (SPS) is reported for Synechocystis sp. strain PCC 6803, a unicellular non-nitrogen-fixing cyanobacterium. Comparisons of the deduced amino acid sequence and some relevant biochemical properties of the enzyme with those of plant SPSs revealed important differences in the N-terminal and UDP-glucose binding site regions, substrate specificities, molecular masses, subunit compositions, and regulatory properties.
TAG Theoretical and …, Jan 1, 2011