Antonio Lanatà | University of Pisa (original) (raw)
Papers by Antonio Lanatà
Materials Science and Engineering: C, 2009
In the present paper a continuum poroelastic model for high frequency acoustic waves in hydrogels... more In the present paper a continuum poroelastic model for high frequency acoustic waves in hydrogels has been developed. The model has been used to obtain the acoustic longitudinal wave equation for ultrasound. In order to obtain a satisfactory model for hydrogels, a viscoelastic force describing the interaction between the polymer network of the matrix and the bounded water is introduced. The model is validated by means of ultrasound (US) wave speed and attenuation measurements in polyvinylalcohol (PVA) hydrogel samples as a function of their water volume fraction "β" and polymer matrix cross-linking. The model predicts that the law ∝ν (1 + δ) for ultrasound attenuation can be applied as a function of the frequency ν, where δ is the frequency exponent of the polymer-bounded water viscosity. This outcome can well explain the attenuation of the US frequency in natural gels where δ is typically about 0.25÷0.50 while the value for pure water is 1. The theory and experiments show that US attenuation in hydrogels decreases steadily with the increase of its water volume fraction β in a linear. The new proposed dissipative mechanism leads to a US wave speed c that follows the law: c =c w (β − ϕ) − 3/2 , where c w is the US wave speed in water and ϕ is the volume fraction of the bounded water. Since 0 b β b 1 and ϕ N 0, the hydrogel US velocity is always higher than that of pure water. If β tends to 1 (100% water), then the US speed in hydrogels converges to a higher value than that of pure water. The US speed gap at β = 1, between hydrogels and water, is the direct consequence of the introduction of the polymer network-bounded water interaction. This is in line with the experimental results that show that the US speed gap at β = 1 decreases in the gel samples with a more cross-linked polymer matrix that has a lower bounded water volume fraction. On the contrary, if the water content is very low (i.e., β b 0.4), the measured US speed converges to that of the dry hydrogel matrix which increases in the samples with a higher degree of network cross-linking with greater elastic moduli.
Journal of The Acoustical Society of America, 2010
In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is ... more In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is presented. A viscoelastic force describing the interaction between the polymer network and the bounded water present in such materials is introduced. The model is tested by means of ultrasound wave speed and attenuation measurements in polyvinylalcohol hydrogel samples. The theory and experiments show that ultrasound attenuation decreases linearly with the increase in the water volume fraction  of the hydrogel. The introduction of the viscoelastic force between the bounded water and the polymer network leads to a bi-phasic theory, showing an ultrasonic fast wave attenuation that can vary as a function of the frequency with a non-integer exponent in agreement with the experimental data in literature. When  tends to 1 ͑100% of interstitial water͒ due to the presence of bounded water in the hydrogel, the ultrasound phase velocity acquires higher value than that of pure water. The ultrasound speed gap at  = 1 is confirmed by the experimental results, showing that it increases in less cross-linked gel samples which own a higher concentration of bounded water.
PLOS ONE, 2015
This study reports on a novel method to detect and reduce the contribution of movement artifact (... more This study reports on a novel method to detect and reduce the contribution of movement artifact (MA) in electrocardiogram (ECG) recordings gathered from horses in free movement conditions. We propose a model that integrates cardiovascular and movement information to estimate the MA contribution. Specifically, ECG and physical activity are continuously acquired from seven horses through a wearable system. Such a system employs completely integrated textile electrodes to monitor ECG and is also equipped with a triaxial accelerometer for movement monitoring. In the literature, the most used technique to remove movement artifacts, when noise bandwidth overlaps the primary source bandwidth, is the adaptive filter. In this study we propose a new algorithm, hereinafter called Stationary Wavelet Movement Artifact Reduction (SWMAR), where the Stationary Wavelet Transform (SWT) decomposition algorithm is employed to identify and remove movement artifacts from ECG signals in horses. A comparative analysis with the Normalized Least Mean Square Adaptive Filter technique (NLMSAF) is performed as well. Results achieved on seven hours of recordings showed a reduction greater than 40% of MA percentage (between before- and after- the application of the proposed algorithm). Moreover, the comparative analysis with the NLMSAF, applied to the same ECG recordings, showed a greater reduction of MA percentage in favour of SWMAR with a statistical significant difference (p-value < 0.0.5).
—One of the main challenges in the study of human behavior is to quantitatively assess the partic... more —One of the main challenges in the study of human behavior is to quantitatively assess the participants' affective states by measuring their psychophysiological signals in ecologically valid conditions. The quality of the acquired data, in fact, is often poor due to artifacts generated by natural interactions such as full body movements and gestures. We created a technology to address this problem. We enhanced the eXperience Induction Machine (XIM), an immersive space we built to conduct experiments on human behavior, with unobtrusive wearable sensors that measure electrocardiogram, breathing rate and electrodermal response. We conducted an empirical validation where participants wearing these sensors were free to move in the XIM space while exposed to a series of visual stimuli taken from the International Affective Picture System (IAPS). Our main result consists in the quantitative estimation of the arousal range of the affective stimuli through the analysis of participants' psychophysiological states. Taken together, our findings show that the XIM constitutes a novel tool to study human behavior in lifelike conditions.
Compared to standard laboratory protocols, the measurement of psychophysiological signals in real... more Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory within a lifelike setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate. In the second study, we designed an experiment that follows the classical conditioning paradigm, a well-known procedure in the behavioral sciences, with the additional feature that participants were free to move in the physical space, as opposed to similar studies measuring physiological signals in constrained laboratory settings. Our results indicate that, by using our sensing infrastructure, it is indeed possible to infer human event-elicited affective states through measurements of psychophysiological signals under ecological conditions.
Compared to standard laboratory protocols, the measurement of psychophysiological signals in real... more Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory within a lifelike setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate. In the second study, we designed an experiment that follows the classical conditioning paradigm, a well-known procedure in the behavioral sciences, with the additional feature that participants were free to move in the physical space, as opposed to similar studies measuring physiological signals in constrained laboratory settings. Our results indicate that, by using our sensing infrastructure, it is indeed possible to infer human event-elicited affective states through measurements of psychophysiological signals under ecological conditions.
Proceedings of the 2014 Virtual Reality International Conference on - VRIC '14, 2014
ABSTRACT The development of systems that allow multimodal interpretation of human-machine interac... more ABSTRACT The development of systems that allow multimodal interpretation of human-machine interaction is crucial to advance our understanding and validation of theoretical models of user behavior. In particular, a system capable of collecting, perceiving and interpreting unconscious behavior can provide rich contextual information for an interactive system. One possible application for such a system is in the exploration of complex data through immersion, where massive amounts of data are generated every day both by humans and computer processes that digitize information at different scales and resolutions thus exceeding our processing capacity. We need tools that accelerate our understanding and generation of hypotheses over the datasets, guide our searches and prevent data overload. We describe XIM-engine, a bio-inspired software framework designed to capture and analyze multi-modal human behavior in an immersive environment. The framework allows performing studies that can advance our understanding on the use of conscious and unconscious reactions in interactive systems.
Frontiers in Bioengineering and Biotechnology, 2015
Non-verbal signals expressed through body language play a crucial role in multi-modal human commu... more Non-verbal signals expressed through body language play a crucial role in multi-modal human communication during social relations. Indeed, in all cultures, facial expressions are the most universal and direct signs to express innate emotional cues. A human face conveys important information in social interactions and helps us to better understand our social partners and establish empathic links. Latest researches show that humanoid and social robots are becoming increasingly similar to humans, both esthetically and expressively. However, their visual expressiveness is a crucial issue that must be improved to make these robots more realistic and intuitively perceivable by humans as not different from them. This study concerns the capability of a humanoid robot to exhibit emotions through facial expressions. More specifically, emotional signs performed by a humanoid robot have been compared with corresponding human facial expressions in terms of recognition rate and response time. The set of stimuli included standardized human expressions taken from an Ekman-based database and the same facial expressions performed by the robot. Furthermore, participants' psychophysiological responses have been explored to investigate whether there could be differences induced by interpreting robot or human emotional stimuli. Preliminary results show a trend to better recognize expressions performed by the robot than 2D photos or 3D models. Moreover, no significant differences in the subjects' psychophysiological state have been found during the discrimination of facial expressions performed by the robot in comparison with the same task performed with 2D photos and 3D models.
IEEE Transactions on Affective Computing, 2015
Methods of information in medicine, 2014
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal ... more This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". The goal of this work is to apply a computational methodology able to characterize mood states in bipolar patients through instantaneous analysis of heartbeat dynamics. A Point-Process-based Nonlinear Autoregressive Integrative (NARI) model is applied to analyze data collected from five bipolar patients (two males and three females, age 42.4 ± 10.5 range 32 -56) undergoing a dedicated affective elicitation protocol using images from the International Affective Picture System (IAPS) and Thematic Apperception Test (TAT). The study was designed within the European project PSYCHE (Personalised monitoring SYstems for Care in mental HEalth). RESULTS demonstrate that the inclusion of instantaneous higher order spectral (HOS) features estimated from the NARI nonlinear assessment significantly improves the...
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2008
The present status of the project aimed at the realization of an innovative wearable system-on-ch... more The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations.
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2008
The paper reports the present status of the project aimed at the realization of a wearable low-co... more The paper reports the present status of the project aimed at the realization of a wearable low-cost low-power System-on-Chip (SoC) 13-GHz passive microwave radiometer in CMOS 90 nm technology. This sensor has been thought to be inserted into the firemen jacket in order to help them in the detection of a hidden fire behind a door or a wall, especially where the IR technology fail. With respect of the prior art, the SoC is further developed and a proof of the concept is provided by means of a discrete-component prototype.
Frontiers in Computational Neuroscience, 2015
The objective assessment of psychological traits of healthy subjects and psychiatric patients has... more The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS) dynamics and specific dimensions such as anxiety, social phobia, stress, and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and non-linear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and non-linear analysis was performed on Heart Rate Variability, InterBreath Interval series, and InterBeat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, non-linear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.
Frontiers in neuroscience, 2014
Compared to standard laboratory protocols, the measurement of psychophysiological signals in real... more Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory within a life-like setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate....
Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a ... more Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a gel medium filled by poroelastic spherical cells is studied. The equation of fast compressional wave, the phase velocity and the attenuation as a function of the elasticity, porosity and concentration of the cells into the gel matrix are investigated. The outcomes of the theory agree with the preliminary measurements done on PVA gel scaffolds inseminated by porcine liver cells at various concentrations. The feasibility of a non-invasive technique for the health assessment of soft biological tissues steaming by the model is analyzed.
Making use of the poroelastic theory for hydrated polymeric matrices, the ultrasound (US) propaga... more Making use of the poroelastic theory for hydrated polymeric matrices, the ultrasound (US) propagation in a gel medium filled by spherical cells is studied. The model describes the connection between the poroelastic structure of living tissues and the propagation behavior of the acoustic waves. The equation of fast compressional wave, its phase velocity and its attenuation as a function of the elasticity, porosity and concentration of the cells into the gel external matrix are investigated. The outcomes of the theory agree with the measurements done on Alginic acid gel scaffolds inseminated by porcine liver cells at various concentrations. The model is promising in the quantitative non-invasive estimation of parameters that could assess the change in the tissue structure, composition and architecture.
Materials Science and Engineering: C, 2009
In the present paper a continuum poroelastic model for high frequency acoustic waves in hydrogels... more In the present paper a continuum poroelastic model for high frequency acoustic waves in hydrogels has been developed. The model has been used to obtain the acoustic longitudinal wave equation for ultrasound. In order to obtain a satisfactory model for hydrogels, a viscoelastic force describing the interaction between the polymer network of the matrix and the bounded water is introduced. The model is validated by means of ultrasound (US) wave speed and attenuation measurements in polyvinylalcohol (PVA) hydrogel samples as a function of their water volume fraction "β" and polymer matrix cross-linking. The model predicts that the law ∝ν (1 + δ) for ultrasound attenuation can be applied as a function of the frequency ν, where δ is the frequency exponent of the polymer-bounded water viscosity. This outcome can well explain the attenuation of the US frequency in natural gels where δ is typically about 0.25÷0.50 while the value for pure water is 1. The theory and experiments show that US attenuation in hydrogels decreases steadily with the increase of its water volume fraction β in a linear. The new proposed dissipative mechanism leads to a US wave speed c that follows the law: c =c w (β − ϕ) − 3/2 , where c w is the US wave speed in water and ϕ is the volume fraction of the bounded water. Since 0 b β b 1 and ϕ N 0, the hydrogel US velocity is always higher than that of pure water. If β tends to 1 (100% water), then the US speed in hydrogels converges to a higher value than that of pure water. The US speed gap at β = 1, between hydrogels and water, is the direct consequence of the introduction of the polymer network-bounded water interaction. This is in line with the experimental results that show that the US speed gap at β = 1 decreases in the gel samples with a more cross-linked polymer matrix that has a lower bounded water volume fraction. On the contrary, if the water content is very low (i.e., β b 0.4), the measured US speed converges to that of the dry hydrogel matrix which increases in the samples with a higher degree of network cross-linking with greater elastic moduli.
Journal of The Acoustical Society of America, 2010
In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is ... more In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is presented. A viscoelastic force describing the interaction between the polymer network and the bounded water present in such materials is introduced. The model is tested by means of ultrasound wave speed and attenuation measurements in polyvinylalcohol hydrogel samples. The theory and experiments show that ultrasound attenuation decreases linearly with the increase in the water volume fraction  of the hydrogel. The introduction of the viscoelastic force between the bounded water and the polymer network leads to a bi-phasic theory, showing an ultrasonic fast wave attenuation that can vary as a function of the frequency with a non-integer exponent in agreement with the experimental data in literature. When  tends to 1 ͑100% of interstitial water͒ due to the presence of bounded water in the hydrogel, the ultrasound phase velocity acquires higher value than that of pure water. The ultrasound speed gap at  = 1 is confirmed by the experimental results, showing that it increases in less cross-linked gel samples which own a higher concentration of bounded water.
PLOS ONE, 2015
This study reports on a novel method to detect and reduce the contribution of movement artifact (... more This study reports on a novel method to detect and reduce the contribution of movement artifact (MA) in electrocardiogram (ECG) recordings gathered from horses in free movement conditions. We propose a model that integrates cardiovascular and movement information to estimate the MA contribution. Specifically, ECG and physical activity are continuously acquired from seven horses through a wearable system. Such a system employs completely integrated textile electrodes to monitor ECG and is also equipped with a triaxial accelerometer for movement monitoring. In the literature, the most used technique to remove movement artifacts, when noise bandwidth overlaps the primary source bandwidth, is the adaptive filter. In this study we propose a new algorithm, hereinafter called Stationary Wavelet Movement Artifact Reduction (SWMAR), where the Stationary Wavelet Transform (SWT) decomposition algorithm is employed to identify and remove movement artifacts from ECG signals in horses. A comparative analysis with the Normalized Least Mean Square Adaptive Filter technique (NLMSAF) is performed as well. Results achieved on seven hours of recordings showed a reduction greater than 40% of MA percentage (between before- and after- the application of the proposed algorithm). Moreover, the comparative analysis with the NLMSAF, applied to the same ECG recordings, showed a greater reduction of MA percentage in favour of SWMAR with a statistical significant difference (p-value < 0.0.5).
—One of the main challenges in the study of human behavior is to quantitatively assess the partic... more —One of the main challenges in the study of human behavior is to quantitatively assess the participants' affective states by measuring their psychophysiological signals in ecologically valid conditions. The quality of the acquired data, in fact, is often poor due to artifacts generated by natural interactions such as full body movements and gestures. We created a technology to address this problem. We enhanced the eXperience Induction Machine (XIM), an immersive space we built to conduct experiments on human behavior, with unobtrusive wearable sensors that measure electrocardiogram, breathing rate and electrodermal response. We conducted an empirical validation where participants wearing these sensors were free to move in the XIM space while exposed to a series of visual stimuli taken from the International Affective Picture System (IAPS). Our main result consists in the quantitative estimation of the arousal range of the affective stimuli through the analysis of participants' psychophysiological states. Taken together, our findings show that the XIM constitutes a novel tool to study human behavior in lifelike conditions.
Compared to standard laboratory protocols, the measurement of psychophysiological signals in real... more Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory within a lifelike setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate. In the second study, we designed an experiment that follows the classical conditioning paradigm, a well-known procedure in the behavioral sciences, with the additional feature that participants were free to move in the physical space, as opposed to similar studies measuring physiological signals in constrained laboratory settings. Our results indicate that, by using our sensing infrastructure, it is indeed possible to infer human event-elicited affective states through measurements of psychophysiological signals under ecological conditions.
Compared to standard laboratory protocols, the measurement of psychophysiological signals in real... more Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory within a lifelike setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate. In the second study, we designed an experiment that follows the classical conditioning paradigm, a well-known procedure in the behavioral sciences, with the additional feature that participants were free to move in the physical space, as opposed to similar studies measuring physiological signals in constrained laboratory settings. Our results indicate that, by using our sensing infrastructure, it is indeed possible to infer human event-elicited affective states through measurements of psychophysiological signals under ecological conditions.
Proceedings of the 2014 Virtual Reality International Conference on - VRIC '14, 2014
ABSTRACT The development of systems that allow multimodal interpretation of human-machine interac... more ABSTRACT The development of systems that allow multimodal interpretation of human-machine interaction is crucial to advance our understanding and validation of theoretical models of user behavior. In particular, a system capable of collecting, perceiving and interpreting unconscious behavior can provide rich contextual information for an interactive system. One possible application for such a system is in the exploration of complex data through immersion, where massive amounts of data are generated every day both by humans and computer processes that digitize information at different scales and resolutions thus exceeding our processing capacity. We need tools that accelerate our understanding and generation of hypotheses over the datasets, guide our searches and prevent data overload. We describe XIM-engine, a bio-inspired software framework designed to capture and analyze multi-modal human behavior in an immersive environment. The framework allows performing studies that can advance our understanding on the use of conscious and unconscious reactions in interactive systems.
Frontiers in Bioengineering and Biotechnology, 2015
Non-verbal signals expressed through body language play a crucial role in multi-modal human commu... more Non-verbal signals expressed through body language play a crucial role in multi-modal human communication during social relations. Indeed, in all cultures, facial expressions are the most universal and direct signs to express innate emotional cues. A human face conveys important information in social interactions and helps us to better understand our social partners and establish empathic links. Latest researches show that humanoid and social robots are becoming increasingly similar to humans, both esthetically and expressively. However, their visual expressiveness is a crucial issue that must be improved to make these robots more realistic and intuitively perceivable by humans as not different from them. This study concerns the capability of a humanoid robot to exhibit emotions through facial expressions. More specifically, emotional signs performed by a humanoid robot have been compared with corresponding human facial expressions in terms of recognition rate and response time. The set of stimuli included standardized human expressions taken from an Ekman-based database and the same facial expressions performed by the robot. Furthermore, participants' psychophysiological responses have been explored to investigate whether there could be differences induced by interpreting robot or human emotional stimuli. Preliminary results show a trend to better recognize expressions performed by the robot than 2D photos or 3D models. Moreover, no significant differences in the subjects' psychophysiological state have been found during the discrimination of facial expressions performed by the robot in comparison with the same task performed with 2D photos and 3D models.
IEEE Transactions on Affective Computing, 2015
Methods of information in medicine, 2014
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal ... more This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". The goal of this work is to apply a computational methodology able to characterize mood states in bipolar patients through instantaneous analysis of heartbeat dynamics. A Point-Process-based Nonlinear Autoregressive Integrative (NARI) model is applied to analyze data collected from five bipolar patients (two males and three females, age 42.4 ± 10.5 range 32 -56) undergoing a dedicated affective elicitation protocol using images from the International Affective Picture System (IAPS) and Thematic Apperception Test (TAT). The study was designed within the European project PSYCHE (Personalised monitoring SYstems for Care in mental HEalth). RESULTS demonstrate that the inclusion of instantaneous higher order spectral (HOS) features estimated from the NARI nonlinear assessment significantly improves the...
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2008
The present status of the project aimed at the realization of an innovative wearable system-on-ch... more The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations.
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2008
The paper reports the present status of the project aimed at the realization of a wearable low-co... more The paper reports the present status of the project aimed at the realization of a wearable low-cost low-power System-on-Chip (SoC) 13-GHz passive microwave radiometer in CMOS 90 nm technology. This sensor has been thought to be inserted into the firemen jacket in order to help them in the detection of a hidden fire behind a door or a wall, especially where the IR technology fail. With respect of the prior art, the SoC is further developed and a proof of the concept is provided by means of a discrete-component prototype.
Frontiers in Computational Neuroscience, 2015
The objective assessment of psychological traits of healthy subjects and psychiatric patients has... more The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS) dynamics and specific dimensions such as anxiety, social phobia, stress, and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and non-linear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and non-linear analysis was performed on Heart Rate Variability, InterBreath Interval series, and InterBeat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, non-linear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.
Frontiers in neuroscience, 2014
Compared to standard laboratory protocols, the measurement of psychophysiological signals in real... more Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory within a life-like setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate....
Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a ... more Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a gel medium filled by poroelastic spherical cells is studied. The equation of fast compressional wave, the phase velocity and the attenuation as a function of the elasticity, porosity and concentration of the cells into the gel matrix are investigated. The outcomes of the theory agree with the preliminary measurements done on PVA gel scaffolds inseminated by porcine liver cells at various concentrations. The feasibility of a non-invasive technique for the health assessment of soft biological tissues steaming by the model is analyzed.
Making use of the poroelastic theory for hydrated polymeric matrices, the ultrasound (US) propaga... more Making use of the poroelastic theory for hydrated polymeric matrices, the ultrasound (US) propagation in a gel medium filled by spherical cells is studied. The model describes the connection between the poroelastic structure of living tissues and the propagation behavior of the acoustic waves. The equation of fast compressional wave, its phase velocity and its attenuation as a function of the elasticity, porosity and concentration of the cells into the gel external matrix are investigated. The outcomes of the theory agree with the measurements done on Alginic acid gel scaffolds inseminated by porcine liver cells at various concentrations. The model is promising in the quantitative non-invasive estimation of parameters that could assess the change in the tissue structure, composition and architecture.