Riccardo Cerrato | University of Pisa (original) (raw)
Uploads
Papers by Riccardo Cerrato
Dendrochronologia, 2020
Pinewoods are distinctive environmental elements in the Mediterranean coastal area and have both ... more Pinewoods are distinctive environmental elements in the Mediterranean coastal area and have both natural and historical significance. From the evening of March 4th to the morning of March 5th, 2015, a severe windstorm occurred in the Tuscany region of central Italy with wind gusts over 120 km/h. The windstorm caused vast damage to the anthropic and natural environment and wounded numerous trees in the renowned pinewoods of Parco della Versiliana in the Tyrrhenian coastal area. The meteorological calamity provided the opportunity to i) date the onset of the artificial plantation of the present Italian stone pine (Pinus pinea L.) forest to the 1820s, ii) build a long-term tree-ring chronology of the Italian stone pines in the area and iii) analyze the climate-growth relationship of the Italian stone pine in the study area. The resulting Versiliana chronology was derived from 60 trees and spanned from 1828 to 2014 (187 years), representing one of the longest living Italian stone pine forests on the Italian Peninsula. Finally, the climate-growth analysis highlighted that at this site the latewood width is positively influenced by summer temperature, a peculiarity worthy of further investigations.
Journal of Glaciology, 2020
Glacial extent and mass-balance are sensitive climate proxies providing solid information on past... more Glacial extent and mass-balance are sensitive climate proxies providing solid information on past climatic conditions. However, series of annual mass balance measurements of more than sixty years are scarce. To our knowledge, this is the first time the latewood density data (MXD) of the Swiss stone pine (Pinus cembra L.) has been used to reconstruct the summer mass balance (Bs) of an Alpine glacier. The MXD-based Bs well correlates with a Bs reconstruction based on the May to September temperature. Winter precipitation has been used as independent proxy to infer the winter mass balance and to obtain an annual mass balance (Bn) estimate dating back to the glaciological year 1811/12. The reconstructed MXD/precipitation-based Bn well correlates with the data both of the Careser and of other Alpine glaciers measured by the glaciological method. A number of critical issues should be considered in both proxies including nonlinear response of glacial mass balance to temperature, bedrock topography, ice thinning and fragmentation, MXD acquisition and standardization methods, and finally the “divergence problem” responsible for the recent reduced sensitivity of the dendrochronological data. Nevertheless, our results highlight the possibility of performing MXD-based dendroglaciological reconstructions using this stable and reliable proxy.
Geografia Fisica e Dinamica Quaternaria, 2018
The Val Viola Pass is a transboundary area between Italy (Val Viola Bormina) and Switzerland (Val... more The Val Viola Pass is a transboundary area between Italy (Val Viola Bormina) and Switzerland (Val da Camp), whose evolution has been triggered, since the Last Glacial Maximum (LGM), by intense reactivation of surface processes. Geomorphological mapping at a scale of 1:5000 provided an understanding of the deglaciation dynamics affecting this region. The geomorphological map (herein presented at scale 1:7000) extends for 5.35 km2 between the elevations of 2305 and 3302 metres above sea level (m a.s.l.). The geomorphological map suggests that the area undergoes geomorphic processes typical of alpine environments of middle latitude, and had experienced a paraglacial-type re-equilibrium related to post-LGM land evolution, with predominant slope and periglacial processes. Moreover, current water action is evident at low elevations. Most of landforms are affected by major regional structures oriented NE-SW. On the Swiss side, specific investigations of the Paradisin rock glacier were performed by Electrical Resistivity Tomography-ERT to determine its internal structure. This was in order to understand its possible cryotic conditions, despite its relict appearance derived from its surface aspect.
iForest - Biogeosciences and Forestry, 2019
The larch budmoth (Zeiraphera diniana Gn.-LBM) offers a unique example of cyclic fluctuations in ... more The larch budmoth (Zeiraphera diniana Gn.-LBM) offers a unique example of cyclic fluctuations in insect populations. During regular LBM mass outbreaks, defoliation of European larch (Larix decidua Mill.) subalpine trees results in distinct ring-width reductions in the host trees. Although several observations, reconstructions and models suggest that LBM outbreaks travel from the southwest to the northeast along the Alpine arc, gaps in the underlying data still hamper our mechanistic understanding of the spatio-temporal system dynamics. Evidence of historical LBM outbreaks before 1964 is generally associated with uncertainty and is particularly scarce for the Central Italian Alps. Here, we introduce four new larch ring-width chronologies from Val di Sole in the Central Italian Alps and use time-series analyses and comparisons with non-host trees (Picea abies Karst.) to reconstruct LBM mass outbreaks. We identify distinct fingerprints of 15 spatially-synchronized LBM events that occurred between 1774 and 1964 CE. Our results are important for improving qualitative space-time models to simulate travelling wave dynamics of insect populations, and for correcting ring-width-based summer temperature reconstructions from this part of the Alpine arc.
Geografia Fisica e Dinamica Quaternaria, 2018
The ongoing increase in the global mean temperature at an unprecedented recorded rate is well doc... more The ongoing increase in the global mean temperature at an unprecedented recorded rate is well documented. Nevertheless, knowledge of past climate variations is fundamental for a better understanding of ongoing climate change. This need is crucial in high mountain areas, where the effects of global warming are amplified and induce an accelerated glacial retreat. Thus, the use of climatic proxies such as tree-ring width offers tools to better understand the environmental dynamics in remote, sensitive sites. Here, we present the “Bosco Antico” site chronology, a six-century long dataset from the most ancient living stand in the Val di Sole area (southern Rhaetian Alps, Italy), and its relationship with summer mean temperatures. The analyses were performed on earlywood and latewood separately, as well as on tree-ring widths using static and moving correlations. The results showed that tree-rings and earlywood width are linked with June temperatures, whereas latewood width is mainly driven by July temperatures. All the analysed series were greatly influenced by June to July and June to August temperatures. Finally, a mean summer latewood-based temperature reconstruction since 1525 is proposed. It highlighted that during the last six hundred years, the summer temperatures span between -2.3 to +1.9 °C compared to the 1960–90 mean temperature (between 6.2 and 10.4 °C at the stand elevation). The coolest phase is recorded in the 1810s-20s underlining the strongest pulse of the Little Ice Age; other phases of negative anomalies are recorded in the first half of the 17th century, around 1700, and 1900 and during the 1970s. Our results add an important dataset for a specific climatic area, providing new information that will contribute to a better understanding of the climate dynamics for the study site as well as on a larger scale.
Dendrochronologia, 2019
Ongoing climate change strongly affects high-elevation environments in the European Alps, influen... more Ongoing climate change strongly affects high-elevation environments in the European Alps, influencing the cryosphere and the biosphere and causing widespread retreat of glaciers and changes in biomes. Nevertheless, high-elevation areas often lack long meteorological series, and global datasets cannot represent local variations well. Thus, proxy data, such as tree rings, provide information on past climatic variations from these remote sites. Although maximum latewood density (MXD) chronologies provide better temperature information than those based on tree-ring width (TRW), MXD series from the European Alps are lacking. To derive high-quality temperature information for the Rhaetian Alps, Pinus cembra L. trees sampled at approximately 2000 m a.s.l. were used to build one MXD chronology spanning from 1647 to 2015. The MXD data were significantly and highly correlated with seasonal May-September mean temperatures. The MXD chronology showed a generally positive trend since the middle of the 19th century, interrupted by short phases of climatic deterioration in the beginning of the 20th century and in the 1970s, conforming with the temperature trends. Our results underline the potential for using Pinus cembra L. MXD to reconstruct mean temperature variations, especially during the onset and latter part of the growing season, providing additional information on parts of the growing season not inferred from TRW. Future studies on MXD for this species will increase the availability of temporal and spatial data, allowing detailed climate reconstructions.
Dendrochronologia, 2020
Pinewoods are distinctive environmental elements in the Mediterranean coastal area and have both ... more Pinewoods are distinctive environmental elements in the Mediterranean coastal area and have both natural and historical significance. From the evening of March 4th to the morning of March 5th, 2015, a severe windstorm occurred in the Tuscany region of central Italy with wind gusts over 120 km/h. The windstorm caused vast damage to the anthropic and natural environment and wounded numerous trees in the renowned pinewoods of Parco della Versiliana in the Tyrrhenian coastal area. The meteorological calamity provided the opportunity to i) date the onset of the artificial plantation of the present Italian stone pine (Pinus pinea L.) forest to the 1820s, ii) build a long-term tree-ring chronology of the Italian stone pines in the area and iii) analyze the climate-growth relationship of the Italian stone pine in the study area. The resulting Versiliana chronology was derived from 60 trees and spanned from 1828 to 2014 (187 years), representing one of the longest living Italian stone pine forests on the Italian Peninsula. Finally, the climate-growth analysis highlighted that at this site the latewood width is positively influenced by summer temperature, a peculiarity worthy of further investigations.
Journal of Glaciology, 2020
Glacial extent and mass-balance are sensitive climate proxies providing solid information on past... more Glacial extent and mass-balance are sensitive climate proxies providing solid information on past climatic conditions. However, series of annual mass balance measurements of more than sixty years are scarce. To our knowledge, this is the first time the latewood density data (MXD) of the Swiss stone pine (Pinus cembra L.) has been used to reconstruct the summer mass balance (Bs) of an Alpine glacier. The MXD-based Bs well correlates with a Bs reconstruction based on the May to September temperature. Winter precipitation has been used as independent proxy to infer the winter mass balance and to obtain an annual mass balance (Bn) estimate dating back to the glaciological year 1811/12. The reconstructed MXD/precipitation-based Bn well correlates with the data both of the Careser and of other Alpine glaciers measured by the glaciological method. A number of critical issues should be considered in both proxies including nonlinear response of glacial mass balance to temperature, bedrock topography, ice thinning and fragmentation, MXD acquisition and standardization methods, and finally the “divergence problem” responsible for the recent reduced sensitivity of the dendrochronological data. Nevertheless, our results highlight the possibility of performing MXD-based dendroglaciological reconstructions using this stable and reliable proxy.
Geografia Fisica e Dinamica Quaternaria, 2018
The Val Viola Pass is a transboundary area between Italy (Val Viola Bormina) and Switzerland (Val... more The Val Viola Pass is a transboundary area between Italy (Val Viola Bormina) and Switzerland (Val da Camp), whose evolution has been triggered, since the Last Glacial Maximum (LGM), by intense reactivation of surface processes. Geomorphological mapping at a scale of 1:5000 provided an understanding of the deglaciation dynamics affecting this region. The geomorphological map (herein presented at scale 1:7000) extends for 5.35 km2 between the elevations of 2305 and 3302 metres above sea level (m a.s.l.). The geomorphological map suggests that the area undergoes geomorphic processes typical of alpine environments of middle latitude, and had experienced a paraglacial-type re-equilibrium related to post-LGM land evolution, with predominant slope and periglacial processes. Moreover, current water action is evident at low elevations. Most of landforms are affected by major regional structures oriented NE-SW. On the Swiss side, specific investigations of the Paradisin rock glacier were performed by Electrical Resistivity Tomography-ERT to determine its internal structure. This was in order to understand its possible cryotic conditions, despite its relict appearance derived from its surface aspect.
iForest - Biogeosciences and Forestry, 2019
The larch budmoth (Zeiraphera diniana Gn.-LBM) offers a unique example of cyclic fluctuations in ... more The larch budmoth (Zeiraphera diniana Gn.-LBM) offers a unique example of cyclic fluctuations in insect populations. During regular LBM mass outbreaks, defoliation of European larch (Larix decidua Mill.) subalpine trees results in distinct ring-width reductions in the host trees. Although several observations, reconstructions and models suggest that LBM outbreaks travel from the southwest to the northeast along the Alpine arc, gaps in the underlying data still hamper our mechanistic understanding of the spatio-temporal system dynamics. Evidence of historical LBM outbreaks before 1964 is generally associated with uncertainty and is particularly scarce for the Central Italian Alps. Here, we introduce four new larch ring-width chronologies from Val di Sole in the Central Italian Alps and use time-series analyses and comparisons with non-host trees (Picea abies Karst.) to reconstruct LBM mass outbreaks. We identify distinct fingerprints of 15 spatially-synchronized LBM events that occurred between 1774 and 1964 CE. Our results are important for improving qualitative space-time models to simulate travelling wave dynamics of insect populations, and for correcting ring-width-based summer temperature reconstructions from this part of the Alpine arc.
Geografia Fisica e Dinamica Quaternaria, 2018
The ongoing increase in the global mean temperature at an unprecedented recorded rate is well doc... more The ongoing increase in the global mean temperature at an unprecedented recorded rate is well documented. Nevertheless, knowledge of past climate variations is fundamental for a better understanding of ongoing climate change. This need is crucial in high mountain areas, where the effects of global warming are amplified and induce an accelerated glacial retreat. Thus, the use of climatic proxies such as tree-ring width offers tools to better understand the environmental dynamics in remote, sensitive sites. Here, we present the “Bosco Antico” site chronology, a six-century long dataset from the most ancient living stand in the Val di Sole area (southern Rhaetian Alps, Italy), and its relationship with summer mean temperatures. The analyses were performed on earlywood and latewood separately, as well as on tree-ring widths using static and moving correlations. The results showed that tree-rings and earlywood width are linked with June temperatures, whereas latewood width is mainly driven by July temperatures. All the analysed series were greatly influenced by June to July and June to August temperatures. Finally, a mean summer latewood-based temperature reconstruction since 1525 is proposed. It highlighted that during the last six hundred years, the summer temperatures span between -2.3 to +1.9 °C compared to the 1960–90 mean temperature (between 6.2 and 10.4 °C at the stand elevation). The coolest phase is recorded in the 1810s-20s underlining the strongest pulse of the Little Ice Age; other phases of negative anomalies are recorded in the first half of the 17th century, around 1700, and 1900 and during the 1970s. Our results add an important dataset for a specific climatic area, providing new information that will contribute to a better understanding of the climate dynamics for the study site as well as on a larger scale.
Dendrochronologia, 2019
Ongoing climate change strongly affects high-elevation environments in the European Alps, influen... more Ongoing climate change strongly affects high-elevation environments in the European Alps, influencing the cryosphere and the biosphere and causing widespread retreat of glaciers and changes in biomes. Nevertheless, high-elevation areas often lack long meteorological series, and global datasets cannot represent local variations well. Thus, proxy data, such as tree rings, provide information on past climatic variations from these remote sites. Although maximum latewood density (MXD) chronologies provide better temperature information than those based on tree-ring width (TRW), MXD series from the European Alps are lacking. To derive high-quality temperature information for the Rhaetian Alps, Pinus cembra L. trees sampled at approximately 2000 m a.s.l. were used to build one MXD chronology spanning from 1647 to 2015. The MXD data were significantly and highly correlated with seasonal May-September mean temperatures. The MXD chronology showed a generally positive trend since the middle of the 19th century, interrupted by short phases of climatic deterioration in the beginning of the 20th century and in the 1970s, conforming with the temperature trends. Our results underline the potential for using Pinus cembra L. MXD to reconstruct mean temperature variations, especially during the onset and latter part of the growing season, providing additional information on parts of the growing season not inferred from TRW. Future studies on MXD for this species will increase the availability of temporal and spatial data, allowing detailed climate reconstructions.