The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes (original) (raw)

Abstract

The metabolism of L-tryptophan by isolated liver cells prepared from control, adrenalectomized, glucocorticoid-treated, acute-diabetic, chronic-diabetic and insulin-treated chronic-diabetic rats was studied. Liver cells from adrenalectomized rats metabolized tryptophan at rates comparable with the minimum diurnal rates of controls, but different from rates determined for cells from control rats 4h later. Administration of dexamethasone phosphate increased the activity of tryptophan 2,3-dioxygenase (EC 1.13.11.11) 7-8-fold, and the flux through the kynurenine pathway 3-4-fold, in cells from both control and adrenalectomized rats. Increases in flux through kynureninase (EC 3.7.1.3) and to acetyl-CoA can be explained in terms of increased substrate supply from tryptophan 2,3-dioxygenase. The metabolism of tryptophan was increased 3-fold in liver cells isolated from acutely (3 days) diabetic rats, with a 7-8-fold increase in the maximal activity of tryptophan 2,3-dioxygenase. The oxidation of tryptophan to CO2 and metabolites of the glutarate pathway increased 4-5-fold, consistent with an increase in picolinate carboxylase (EC 4.1.1.45) activity. Liver cells isolated from chronic (10 days) diabetic rats metabolized tryptophan at rates comparable with those of cells from acutely diabetic rats, but with a 50% decrease in the activity of tryptophan 2,3-dioxygenase. The proportion of flux from tryptophan 2,3-dioxygenase to acetyl-CoA, however, was increased by 50%; this was indicative of further increases in the activity of picolinate carboxylase. Administration of insulin partially reversed the effects of chronic diabetes on the activity of tryptophan 2,3-dioxygenase and flux through the kynurenine pathway, but had no effect on the increased activity of picolinate carboxylase. The role of tryptophan 2,3-dioxygenase in regulating the blood tryptophan concentration is discussed with reference to its sensitivity to the above conditions.

499

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CIVEN M., KNOX W. E. Pattern of adaptive control of levels of rat liver tryptophan transaminase. Science. 1959 Jun 19;129(3364):1672–1673. doi: 10.1126/science.129.3364.1672. [DOI] [PubMed] [Google Scholar]
  3. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  4. Crandall E. A., Fernstrom J. D. Effect of experimental diabetes on the levels of aromatic and branched-chain amino acids in rat blood and brain. Diabetes. 1983 Mar;32(3):222–230. doi: 10.2337/diab.32.3.222. [DOI] [PubMed] [Google Scholar]
  5. Curzon G., Kantamaneni B. D., Callaghan N., Sullivan P. A. Brain transmitter precursors and metabolites in diabetic ketoacidosis. J Neurol Neurosurg Psychiatry. 1982 Jun;45(6):489–493. doi: 10.1136/jnnp.45.6.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curzon G. Relationships between plasma, CSF and brain tryptophan. J Neural Transm Suppl. 1979;(15):81–92. doi: 10.1007/978-3-7091-2243-3_7. [DOI] [PubMed] [Google Scholar]
  7. Fernando J. C., Knott P. J., Curzon G. The relevance of both plasma free tryptophan and insulin to rat brain tryptophan concentration. J Neurochem. 1976 Jul;27(1):343–345. doi: 10.1111/j.1471-4159.1976.tb01598.x. [DOI] [PubMed] [Google Scholar]
  8. IKEDA M., TSUJI H., NAKAMURA S., ICHIYAMA A., NISHIZUKA Y., HAYAISHI O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. II. A ROLE OF PICOLINIC CARBOXYLASE IN THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE FROM TRYPTOPHAN IN MAMMALS. J Biol Chem. 1965 Mar;240:1395–1401. [PubMed] [Google Scholar]
  9. Jéquier E., Lovenberg W., Sjoerdsma A. Tryptophan hydroxylase inhibition: the mechanism by which p-chlorophenylalanine depletes rat brain serotonin. Mol Pharmacol. 1967 May;3(3):274–278. [PubMed] [Google Scholar]
  10. KNOX W. E., MEHLER A. H. The adaptive increase of the tryptophan peroxidase-oxidase system of liver. Science. 1951 Mar 2;113(2931):237–238. doi: 10.1126/science.113.2931.237. [DOI] [PubMed] [Google Scholar]
  11. KNOX W. E. The relation of liver kynureninase to tryptophan metabolism in pyridoxine deficiency. Biochem J. 1953 Feb;53(3):379–385. doi: 10.1042/bj0530379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KNOX W. E. Two mechanisms which increase in vivo the liver tryptophan peroxidase activity: specific enzyme adaptation and stimulation of the pituitary adrenal system. Br J Exp Pathol. 1951 Oct;32(5):462–469. [PMC free article] [PubMed] [Google Scholar]
  13. Knott P. J., Curzon G. Free tryptophan in plasma and brain tryptophan metabolism. Nature. 1972 Oct 20;239(5373):452–453. doi: 10.1038/239452a0. [DOI] [PubMed] [Google Scholar]
  14. Knowles R. G., Pogson C. I. Characteristics of tryptophan accumulation by isolated rat forebrain synaptosomes. J Neurochem. 1984 Mar;42(3):663–669. doi: 10.1111/j.1471-4159.1984.tb02734.x. [DOI] [PubMed] [Google Scholar]
  15. Knox W. E. The regulation of tryptophan pyrrolase activity by tryptophan. Adv Enzyme Regul. 1966;4:287–297. doi: 10.1016/0065-2571(66)90023-9. [DOI] [PubMed] [Google Scholar]
  16. Krone W., Marquardt W., Seitz H. J., Tarnowski W. Interaction between glucocorticoids and cyclic AMP in the regulation of phosphoenolpyruvate carboxykinase (GTP) in the isolated perfused rat liver. Effects of cordycepin and cycloheximide. Biochim Biophys Acta. 1976 Nov 18;451(1):72–81. doi: 10.1016/0304-4165(76)90258-0. [DOI] [PubMed] [Google Scholar]
  17. MEHLER A. H., McDANIEL E. G., HUNDLEY J. M. Changes in the enzymatic composition of liver. I. Increase of picolinic carboxylase in diabetes. J Biol Chem. 1958 May;232(1):323–330. [PubMed] [Google Scholar]
  18. MEHLER A. H., McDANIEL E. G., HUNDLEY J. M. Changes in the enzymatic composition of liver. II. Influence of hormones on picolinic carboxylase and tryptophan peroxidase. J Biol Chem. 1958 May;232(1):331–335. [PubMed] [Google Scholar]
  19. MEHLER A. H., YANO K., MAY E. L. NICOTONIC ACID BIOSYNTHESIS: CONTROL BY AN ENZYME THAT COMPETES WITH A SPONTANEOUS REACTION. Science. 1964 Aug 21;145(3634):817–819. doi: 10.1126/science.145.3634.817. [DOI] [PubMed] [Google Scholar]
  20. Magboul B. I., Bender D. A. The effects of a dietary excess of leucine on the synthesis of nicotinamide nucleotides in the rat. Br J Nutr. 1983 May;49(3):321–329. doi: 10.1079/bjn19830041. [DOI] [PubMed] [Google Scholar]
  21. McDaniel H. G., Boshell B. R., Reddy W. J. Hypoglycemic action of tryptophan. Diabetes. 1973 Sep;22(9):713–718. doi: 10.2337/diab.22.9.713. [DOI] [PubMed] [Google Scholar]
  22. Metzler H., Gebhardt R., Oberrauch W., Mecke D. A convenient and highly sensitive spectrophotometric assay for tryptophan 2,3-dioxygenase. Anal Biochem. 1982 Mar 15;121(1):10–16. doi: 10.1016/0003-2697(82)90550-4. [DOI] [PubMed] [Google Scholar]
  23. Nakamura T., Shinno H., Ichihara A. Insulin and glucagon as a new regulator system for tryptophan oxygenase activity demonstrated in primary cultured rat hepatocytes. J Biol Chem. 1980 Aug 25;255(16):7533–7535. [PubMed] [Google Scholar]
  24. Postle A. D., Bloxham D. P. Glucocorticoid hormones have a permissive role in the phosphorylation of L-type pyruvate kinase by glucagon. Eur J Biochem. 1982 May;124(1):103–108. doi: 10.1111/j.1432-1033.1982.tb05911.x. [DOI] [PubMed] [Google Scholar]
  25. Rose D. P. Aspects of tryptophan metabolism in health and disease: a review. J Clin Pathol. 1972 Jan;25(1):17–25. doi: 10.1136/jcp.25.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Salter M., Stanley J. C., Fisher M. J., Pogson C. I. The influence of starvation and tryptophan administration on the metabolism of phenylalanine, tyrosine and tryptophan in isolated rat liver cells. Biochem J. 1984 Jul 15;221(2):431–438. doi: 10.1042/bj2210431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanada H., Miyazaki M., Takahashi T. Regulation of tryptophan-niacin metabolism in diabetic rats. J Nutr Sci Vitaminol (Tokyo) 1980;26(5):449–459. doi: 10.3177/jnsv.26.449. [DOI] [PubMed] [Google Scholar]
  28. Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
  29. Smith S. A., Carr F. P., Pogson C. I. The metabolism of L-tryptophan by isolated rat liver cells. Quantification of the relative importance of, and the effect of nutritional status on, the individual pathways of tryptophan metabolism. Biochem J. 1980 Nov 15;192(2):673–686. doi: 10.1042/bj1920673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith S. A., Marston F. A., Dickson A. J., Pogson C. I. Control of enzyme activities in rat liver by tryptophan and its metabolites. Biochem Pharmacol. 1979 May 15;28(10):1645–1651. doi: 10.1016/0006-2952(79)90178-3. [DOI] [PubMed] [Google Scholar]
  31. Smith S. A., Pogson C. I. The metabolism of L-tryptophan by isolated rat liver cells. Effect of albumin binding and amino acid competition on oxidatin of tryptophan by tryptophan 2,3-dioxygenase. Biochem J. 1980 Mar 15;186(3):977–986. doi: 10.1042/bj1860977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith S. A., Pogson C. L. Tryptophan and the control of plasma glucose concentrations in the rat. Biochem J. 1977 Dec 15;168(3):495–506. doi: 10.1042/bj1680495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  34. Stewart K. K., Doherty R. F. Resolution of DL-tryptophan by affinity chromatography on bovine-serum albumin-agarose columns. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2850–2852. doi: 10.1073/pnas.70.10.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Trulson M. E., MacKenzie R. G. Increased tryptophan hydroxylase activity may compensate for decreased brain tryptophan levels in streptozotocin-diabetic rats. J Pharmacol Exp Ther. 1980 Feb;212(2):269–273. [PubMed] [Google Scholar]
  36. Van Lan V., Yamaguchi N., Garcia M. J., Ramey E. R., Penhos J. C. Effect of hypophysectomy and adrenalectomy on glucagon and insulin concentration. Endocrinology. 1974 Mar;94(3):671–675. doi: 10.1210/endo-94-3-671. [DOI] [PubMed] [Google Scholar]
  37. Voigt J., Sekeris C. E. Induction of tryptophan oxygenase and tyrosine aminotransferase by metabolites of hydrocortisone. Biochim Biophys Acta. 1980 Dec 15;633(3):422–435. doi: 10.1016/0304-4165(80)90200-7. [DOI] [PubMed] [Google Scholar]
  38. Wurtman R. J., Axelrod J. Daily rhythmic changes in tyrosine transaminase activity of the rat liver. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1594–1598. doi: 10.1073/pnas.57.6.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wurtman R. J. Daily rhythms in tyrosine transaminase and other hepatic enzymes that metabolize amino acids: mechanisms and possible consequences. Life Sci. 1974 Sep 1;15(5):827–847. doi: 10.1016/0024-3205(74)90001-0. [DOI] [PubMed] [Google Scholar]
  40. Young S. N., St-Arnaud-McKenzie D., Sourkes T. L. Importance of tryptophan pyrrolase and aromatic amino acid decarboxylase in the catabolism of tryptophan. Biochem Pharmacol. 1978 Mar 1;27(5):763–767. doi: 10.1016/0006-2952(78)90517-8. [DOI] [PubMed] [Google Scholar]