TRF1 is a dimer and bends telomeric DNA (original) (raw)

Abstract

TRF1 is a mammalian telomeric protein that binds to the duplex array of TTAGGG repeats at chromosome ends. TRF1 has homology to the DNA-binding domain of the Myb family of transcription factors but, unlike most Myb-related proteins, TRF1 carries one rather than multiple Myb-type DNA-binding motifs. Here we show that TRF1 binds DNA as a dimer using a large conserved domain near the N-terminus of the protein for TRF1-TRF1 interactions. Dimerization was observed both in a complex with DNA and in the yeast two-hybrid assay. TRF1 dimers were found to require both Myb repeats for the formation of a stable complex with DNA, indicating a parallel between the DNA-binding mode of TRF1 and other Myb-related proteins. TRF1 was found to have a number of biochemical similarities to Rap1p, a distantly related DNA-binding protein that functions at telomeres in yeast. Rap1p and TRF1 both require two Myb motifs for DNA binding and both factors bind along their cognate telomeric sequences without showing strong cooperative interactions between adjacent proteins. Furthermore, TRF1 was found to bend its telomeric site to an angle of -120 degrees. Since Rap1p similarly distorts telomeric DNA, we propose that DNA bending is important for the function of telomeres in yeast and mammals.

Full Text

The Full Text of this article is available as a PDF (332.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autexier C., Greider C. W. Telomerase and cancer: revisiting the telomere hypothesis. Trends Biochem Sci. 1996 Oct;21(10):387–391. [PubMed] [Google Scholar]
  2. Baranowskij N., Frohberg C., Prat S., Willmitzer L. A novel DNA binding protein with homology to Myb oncoproteins containing only one repeat can function as a transcriptional activator. EMBO J. 1994 Nov 15;13(22):5383–5392. doi: 10.1002/j.1460-2075.1994.tb06873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnett M. A., Buckle V. J., Evans E. P., Porter A. C., Rout D., Smith A. G., Brown W. R. Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res. 1993 Jan 11;21(1):27–36. doi: 10.1093/nar/21.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilaud T., Koering C. E., Binet-Brasselet E., Ancelin K., Pollice A., Gasser S. M., Gilson E. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res. 1996 Apr 1;24(7):1294–1303. doi: 10.1093/nar/24.7.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brigati C., Kurtz S., Balderes D., Vidali G., Shore D. An essential yeast gene encoding a TTAGGG repeat-binding protein. Mol Cell Biol. 1993 Feb;13(2):1306–1314. doi: 10.1128/mcb.13.2.1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broccoli D., Chong L., Oelmann S., Fernald A. A., Marziliano N., van Steensel B., Kipling D., Le Beau M. M., de Lange T. Comparison of the human and mouse genes encoding the telomeric protein, TRF1: chromosomal localization, expression and conserved protein domains. Hum Mol Genet. 1997 Jan;6(1):69–76. doi: 10.1093/hmg/6.1.69. [DOI] [PubMed] [Google Scholar]
  7. Chong L., van Steensel B., Broccoli D., Erdjument-Bromage H., Hanish J., Tempst P., de Lange T. A human telomeric protein. Science. 1995 Dec 8;270(5242):1663–1667. doi: 10.1126/science.270.5242.1663. [DOI] [PubMed] [Google Scholar]
  8. Conrad M. N., Wright J. H., Wolf A. J., Zakian V. A. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell. 1990 Nov 16;63(4):739–750. doi: 10.1016/0092-8674(90)90140-a. [DOI] [PubMed] [Google Scholar]
  9. Counter C. M., Avilion A. A., LeFeuvre C. E., Stewart N. G., Greider C. W., Harley C. B., Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992 May;11(5):1921–1929. doi: 10.1002/j.1460-2075.1992.tb05245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferrari S., Harley V. R., Pontiggia A., Goodfellow P. N., Lovell-Badge R., Bianchi M. E. SRY, like HMG1, recognizes sharp angles in DNA. EMBO J. 1992 Dec;11(12):4497–4506. doi: 10.1002/j.1460-2075.1992.tb05551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilson E., Roberge M., Giraldo R., Rhodes D., Gasser S. M. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J Mol Biol. 1993 May 20;231(2):293–310. doi: 10.1006/jmbi.1993.1283. [DOI] [PubMed] [Google Scholar]
  12. Hanish J. P., Yanowitz J. L., de Lange T. Stringent sequence requirements for the formation of human telomeres. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8861–8865. doi: 10.1073/pnas.91.19.8861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Høvring I., Bostad A., Ording E., Myrset A. H., Gabrielsen O. S. DNA-binding domain and recognition sequence of the yeast BAS1 protein, a divergent member of the Myb family of transcription factors. J Biol Chem. 1994 Jul 1;269(26):17663–17669. [PubMed] [Google Scholar]
  14. Konig P., Giraldo R., Chapman L., Rhodes D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell. 1996 Apr 5;85(1):125–136. doi: 10.1016/s0092-8674(00)81088-0. [DOI] [PubMed] [Google Scholar]
  15. Larson G. P., Castanotto D., Rossi J. J., Malafa M. P. Isolation and functional analysis of a Kluyveromyces lactis RAP1 homologue. Gene. 1994 Dec 2;150(1):35–41. doi: 10.1016/0378-1119(94)90854-0. [DOI] [PubMed] [Google Scholar]
  16. Ludérus M. E., van Steensel B., Chong L., Sibon O. C., Cremers F. F., de Lange T. Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J Cell Biol. 1996 Nov;135(4):867–881. doi: 10.1083/jcb.135.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lugert T., Werr W. A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). Plant Mol Biol. 1994 Jun;25(3):493–506. doi: 10.1007/BF00043877. [DOI] [PubMed] [Google Scholar]
  18. Lundblad V., Szostak J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell. 1989 May 19;57(4):633–643. doi: 10.1016/0092-8674(89)90132-3. [DOI] [PubMed] [Google Scholar]
  19. McEachern M. J., Blackburn E. H. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature. 1995 Aug 3;376(6539):403–409. doi: 10.1038/376403a0. [DOI] [PubMed] [Google Scholar]
  20. Morrow B. E., Ju Q., Warner J. R. A bipartite DNA-binding domain in yeast Reb1p. Mol Cell Biol. 1993 Feb;13(2):1173–1182. doi: 10.1128/mcb.13.2.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moyzis R. K., Buckingham J. M., Cram L. S., Dani M., Deaven L. L., Jones M. D., Meyne J., Ratliff R. L., Wu J. R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6622–6626. doi: 10.1073/pnas.85.18.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ogata K., Morikawa S., Nakamura H., Sekikawa A., Inoue T., Kanai H., Sarai A., Ishii S., Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell. 1994 Nov 18;79(4):639–648. doi: 10.1016/0092-8674(94)90549-5. [DOI] [PubMed] [Google Scholar]
  23. Saikumar P., Gabriel J. L., Reddy E. P. The Myb oncogene product induces DNA-bending. Oncogene. 1994 Apr;9(4):1279–1287. [PubMed] [Google Scholar]
  24. Saikumar P., Murali R., Reddy E. P. Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8452–8456. doi: 10.1073/pnas.87.21.8452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sitzmann J., Noben-Trauth K., Kamano H., Klempnauer K. H. Expression of B-Myb during mouse embryogenesis. Oncogene. 1996 May 2;12(9):1889–1894. [PubMed] [Google Scholar]
  26. Thompson J. F., Landy A. Empirical estimation of protein-induced DNA bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res. 1988 Oct 25;16(20):9687–9705. doi: 10.1093/nar/16.20.9687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vignais M. L., Sentenac A. Asymmetric DNA bending induced by the yeast multifunctional factor TUF. J Biol Chem. 1989 May 25;264(15):8463–8466. [PubMed] [Google Scholar]
  28. Wilkie A. O., Lamb J., Harris P. C., Finney R. D., Higgs D. R. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature. 1990 Aug 30;346(6287):868–871. doi: 10.1038/346868a0. [DOI] [PubMed] [Google Scholar]
  29. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]
  30. Yu G. L., Bradley J. D., Attardi L. D., Blackburn E. H. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature. 1990 Mar 8;344(6262):126–132. doi: 10.1038/344126a0. [DOI] [PubMed] [Google Scholar]
  31. Zakian V. A. Telomeres: beginning to understand the end. Science. 1995 Dec 8;270(5242):1601–1607. doi: 10.1126/science.270.5242.1601. [DOI] [PubMed] [Google Scholar]
  32. Zhang L., Guarente L. The yeast activator HAP1--a GAL4 family member--binds DNA in a directly repeated orientation. Genes Dev. 1994 Sep 1;8(17):2110–2119. doi: 10.1101/gad.8.17.2110. [DOI] [PubMed] [Google Scholar]
  33. Zhong Z., Shiue L., Kaplan S., de Lange T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol. 1992 Nov;12(11):4834–4843. doi: 10.1128/mcb.12.11.4834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. da Costa e Silva O., Klein L., Schmelzer E., Trezzini G. F., Hahlbrock K. BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response. Plant J. 1993 Jul;4(1):125–135. doi: 10.1046/j.1365-313x.1993.04010125.x. [DOI] [PubMed] [Google Scholar]
  35. de Lange T., Shiue L., Myers R. M., Cox D. R., Naylor S. L., Killery A. M., Varmus H. E. Structure and variability of human chromosome ends. Mol Cell Biol. 1990 Feb;10(2):518–527. doi: 10.1128/mcb.10.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]