Chimeric purine transporters of Aspergillus nidulans define a domain critical for function and specificity conserved in bacterial, plant and metazoan homologues (original) (raw)

Abstract

In Aspergillus nidulans, purine uptake is mediated by three transporter proteins: UapA, UapC and AzgA. UapA and UapC have partially overlapping functions, are 62% identical and have nearly identical predicted topologies. Their structural similarity is associated with overlapping substrate specificities; UapA is a high-affinity, high-capacity specific xanthine/uric acid transporter. UapC is a low/moderate-capacity general purine transporter. We constructed and characterized UapA/UapC, UapC/UapA and UapA/UapC/UapA chimeric proteins and UapA point mutations. The region including residues 378-446 in UapA (336-404 in UapC) has been shown to be critical for purine recognition and transport. Within this region, we identified: (i) one amino acid residue (A404) important for transporter function but probably not for specificity and two residues (E412 and R414) important for UapA function and specificity; and (ii) a sequence, (F/Y/S)X(Q/E/P) NXGXXXXT(K/R/G), which is highly conserved in all homologues of nucleobase transporters from bacteria to man. The UapC/UapA series of chimeras behaves in a linear pattern and leads to an univocal assignment of functional domains while the analysis of the reciprocal and 'sandwich' chimeras revealed unexpected inter-domain interactions. cDNAs coding for transporters including the specificity region defined by these studies have been identified for the first time in the human and Caenorhabditis elegans databases.

Full Text

The Full Text of this article is available as a PDF (711.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbuckle M. I., Kane S., Porter L. M., Seatter M. J., Gould G. W. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry. 1996 Dec 24;35(51):16519–16527. doi: 10.1021/bi962210n. [DOI] [PubMed] [Google Scholar]
  2. Arst H. N., Jr, Scazzocchio C. Initiator constitutive mutation with an 'up-promoter' effect in Aspergillus nidulans. Nature. 1975 Mar 6;254(5495):31–34. doi: 10.1038/254031a0. [DOI] [PubMed] [Google Scholar]
  3. Bloch J. C., Sychrova H., Souciet J. L., Jund R., Chevallier M. R. Determination of a specific region of the purine-cytosine permease involved in the recognition of its substrates. Mol Microbiol. 1992 Oct;6(20):2989–2997. doi: 10.1111/j.1365-2958.1992.tb01757.x. [DOI] [PubMed] [Google Scholar]
  4. Buck K. J., Amara S. G. Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12584–12588. doi: 10.1073/pnas.91.26.12584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caron M. G. Molecular neurobiology. The chimaeras speak again. Nature. 1993 Dec 2;366(6454):409–409. doi: 10.1038/366409a0. [DOI] [PubMed] [Google Scholar]
  6. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  7. Darlington A. J., Scazzocchio C. Use of analogues and the substrate-sensitivity of mutants in analysis of purine uptake and breakdown in Aspergillus nidulans. J Bacteriol. 1967 Mar;93(3):937–940. doi: 10.1128/jb.93.3.937-940.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diallinas G., Gorfinkiel L., Arst H. N., Jr, Cecchetto G., Scazzocchio C. Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J Biol Chem. 1995 Apr 14;270(15):8610–8622. doi: 10.1074/jbc.270.15.8610. [DOI] [PubMed] [Google Scholar]
  9. Diallinas G., Scazzocchio C. A gene coding for the uric acid-xanthine permease of Aspergillus nidulans: inactivational cloning, characterization, and sequence of a cis-acting mutation. Genetics. 1989 Jun;122(2):341–350. doi: 10.1093/genetics/122.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferreira T., Brèthes D., Napias C., Chevallier J. Functional analyses of yeast purine-cytosine permease mutants. Folia Microbiol (Praha) 1996;41(1):90–91. doi: 10.1007/BF02816351. [DOI] [PubMed] [Google Scholar]
  11. Fox I. H., Kelley W. N. The role of adenosine and 2'-deoxyadenosine in mammalian cells. Annu Rev Biochem. 1978;47:655–686. doi: 10.1146/annurev.bi.47.070178.003255. [DOI] [PubMed] [Google Scholar]
  12. Frommer W. B., Kwart M., Hirner B., Fischer W. N., Hummel S., Ninnemann O. Transporters for nitrogenous compounds in plants. Plant Mol Biol. 1994 Dec;26(5):1651–1670. doi: 10.1007/BF00016495. [DOI] [PubMed] [Google Scholar]
  13. Galan J. M., Haguenauer-Tsapis R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 1997 Oct 1;16(19):5847–5854. doi: 10.1093/emboj/16.19.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gorfinkiel L., Diallinas G., Scazzocchio C. Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J Biol Chem. 1993 Nov 5;268(31):23376–23381. [PubMed] [Google Scholar]
  15. Griffith D. A., Jarvis S. M. High affinity sodium-dependent nucleobase transport in cultured renal epithelial cells (LLC-PK1). J Biol Chem. 1993 Sep 25;268(27):20085–20090. [PubMed] [Google Scholar]
  16. Guimarães M. J., Bazan J. F., Zlotnik A., Wiles M. V., Grimaldi J. C., Lee F., McClanahan T. A new approach to the study of haematopoietic development in the yolk sac and embryoid bodies. Development. 1995 Oct;121(10):3335–3346. doi: 10.1242/dev.121.10.3335. [DOI] [PubMed] [Google Scholar]
  17. Johnstone I. L., Hughes S. G., Clutterbuck A. J. Cloning an Aspergillus nidulans developmental gene by transformation. EMBO J. 1985 May;4(5):1307–1311. doi: 10.1002/j.1460-2075.1985.tb03777.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leal-Pinto E., Tao W., Rappaport J., Richardson M., Knorr B. A., Abramson R. G. Molecular cloning and functional reconstitution of a urate transporter/channel. J Biol Chem. 1997 Jan 3;272(1):617–625. doi: 10.1074/jbc.272.1.617. [DOI] [PubMed] [Google Scholar]
  19. Lockington R. A., Sealy-Lewis H. M., Scazzocchio C., Davies R. W. Cloning and characterization of the ethanol utilization regulon in Aspergillus nidulans. Gene. 1985;33(2):137–149. doi: 10.1016/0378-1119(85)90088-5. [DOI] [PubMed] [Google Scholar]
  20. Moore K. R., Blakely R. D. Restriction site-independent formation of chimeras from homologous neurotransmitter-transporter cDNAs. Biotechniques. 1994 Jul;17(1):130-5, 137. [PubMed] [Google Scholar]
  21. Nishizawa K., Shimoda E., Kasahara M. Substrate recognition domain of the Gal2 galactose transporter in yeast Saccharomyces cerevisiae as revealed by chimeric galactose-glucose transporters. J Biol Chem. 1995 Feb 10;270(6):2423–2426. doi: 10.1074/jbc.270.6.2423. [DOI] [PubMed] [Google Scholar]
  22. Noel L. E., Newgard C. B. Structural domains that contribute to substrate specificity in facilitated glucose transporters are distinct from those involved in kinetic function: studies with GLUT-1/GLUT-2 chimeras. Biochemistry. 1997 May 6;36(18):5465–5475. doi: 10.1021/bi9630624. [DOI] [PubMed] [Google Scholar]
  23. Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
  24. Ravagnani A., Gorfinkiel L., Langdon T., Diallinas G., Adjadj E., Demais S., Gorton D., Arst H. N., Jr, Scazzocchio C. Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J. 1997 Jul 1;16(13):3974–3986. doi: 10.1093/emboj/16.13.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rodriguez C., Bloch J. C., Chevallier M. R. The immunodetected yeast purine-cytosine permease is not N-linked glycosylated, nor are glycosylation sequences required to have a functional permease. Yeast. 1995 Jan;11(1):15–23. doi: 10.1002/yea.320110103. [DOI] [PubMed] [Google Scholar]
  26. Sadée W., Drübbisch V., Amidon G. L. Biology of membrane transport proteins. Pharm Res. 1995 Dec;12(12):1823–1837. doi: 10.1023/a:1016211015926. [DOI] [PubMed] [Google Scholar]
  27. Scazzocchio C., Darlington A. J. The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochim Biophys Acta. 1968 Sep 24;166(2):557–568. doi: 10.1016/0005-2787(68)90243-8. [DOI] [PubMed] [Google Scholar]
  28. Scazzocchio C., Sdrin N., Ong G. Positive regulation in a eukaryote, a study of the uaY gene of Aspergillus nidulans: I. Characterization of alleles, dominance and complementation studies, and a fine structure map of the uaY--oxpA cluster. Genetics. 1982 Feb;100(2):185–208. doi: 10.1093/genetics/100.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scazzocchio C. The purine degradation pathway, genetics, biochemistry and regulation. Prog Ind Microbiol. 1994;29:221–257. [PubMed] [Google Scholar]
  30. Schultes N. P., Brutnell T. P., Allen A., Dellaporta S. L., Nelson T., Chen J. Leaf permease1 gene of maize is required for chloroplast development. Plant Cell. 1996 Mar;8(3):463–475. doi: 10.1105/tpc.8.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tazebay U. H., Sophianopoulou V., Cubero B., Scazzocchio C., Diallinas G. Post-transcriptional control and kinetic characterization of proline transport in germinating conidiospores of Aspergillus nidulans. FEMS Microbiol Lett. 1995 Oct 1;132(1-2):27–37. doi: 10.1111/j.1574-6968.1995.tb07806.x. [DOI] [PubMed] [Google Scholar]
  32. Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Volland C., Urban-Grimal D., Géraud G., Haguenauer-Tsapis R. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem. 1994 Apr 1;269(13):9833–9841. [PubMed] [Google Scholar]
  34. Wandel S., Buchs A., Schürmann A., Summers S. A., Powers A. C., Shanahan M. F., Joost H. G. Glucose transport activity and ligand binding (cytochalasin B, IAPS-forskolin) of chimeric constructs of GLUT2 and GLUT4 expressed in COS-7-cells. Biochim Biophys Acta. 1996 Oct 2;1284(1):56–62. doi: 10.1016/0005-2736(96)00111-3. [DOI] [PubMed] [Google Scholar]
  35. Wang J., Giacomini K. M. Molecular determinants of substrate selectivity in Na+-dependent nucleoside transporters. J Biol Chem. 1997 Nov 14;272(46):28845–28848. doi: 10.1074/jbc.272.46.28845. [DOI] [PubMed] [Google Scholar]
  36. Washington C. B., Giacomini K. M. Mechanisms of nucleobase transport in rabbit choroid plexus. Evidence for a Na(+)-dependent nucleobase transporter with broad substrate selectivity. J Biol Chem. 1995 Sep 29;270(39):22816–22819. doi: 10.1074/jbc.270.39.22816. [DOI] [PubMed] [Google Scholar]
  37. Zhang X., Collins K. I., Greenberger L. M. Functional evidence that transmembrane 12 and the loop between transmembrane 11 and 12 form part of the drug-binding domain in P-glycoprotein encoded by MDR1. J Biol Chem. 1995 Mar 10;270(10):5441–5448. doi: 10.1074/jbc.270.10.5441. [DOI] [PubMed] [Google Scholar]