Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus (original) (raw)

Abstract

Tachylectin-2, isolated from large granules of the hemocytes of the Japanese horseshoe crab (Tachypleus tridentatus), is a 236 amino acid protein belonging to the lectins. It binds specifically to N-acetylglucosamine and N-acetylgalactosamine and is a part of the innate immunity host defense system of the horseshoe crab. The X-ray structure of tachylectin-2 was solved at 2.0 A resolution by the multiple isomorphous replacement method and this molecular model was employed to solve the X-ray structure of the complex with N-acetylglucosamine. Tachylectin-2 is the first protein displaying a five-bladed beta-propeller structure. Five four-stranded antiparallel beta-sheets of W-like topology are arranged around a central water-filled tunnel, with the water molecules arranged as a pentagonal dodecahedron. Tachylectin-2 exhibits five virtually identical binding sites, one in each beta-sheet. The binding sites are located between adjacent beta-sheets and are made by a large loop between the outermost strands of the beta-sheets and the connecting segment from the previous beta-sheet. The high number of five binding sites within the single polypeptide chain strongly suggests the recognition of carbohydrate surface structures of pathogens with a fairly high ligand density. Thus, tachylectin-2 employs strict specificity for certain N-acetyl sugars as well as the surface ligand density for self/non-self recognition.

Full Text

The Full Text of this article is available as a PDF (449.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):30–42. doi: 10.1107/S0907444995008754. [DOI] [PubMed] [Google Scholar]
  2. Baker S. C., Saunders N. F., Willis A. C., Ferguson S. J., Hajdu J., Fülöp V. Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds. J Mol Biol. 1997 Jun 13;269(3):440–455. doi: 10.1006/jmbi.1997.1070. [DOI] [PubMed] [Google Scholar]
  3. Bergner A., Oganessyan V., Muta T., Iwanaga S., Typke D., Huber R., Bode W. Crystal structure of a coagulogen, the clotting protein from horseshoe crab: a structural homologue of nerve growth factor. EMBO J. 1996 Dec 16;15(24):6789–6797. [PMC free article] [PubMed] [Google Scholar]
  4. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  5. Burrows L., Iobst S. T., Drickamer K. Selective binding of N-acetylglucosamine to the chicken hepatic lectin. Biochem J. 1997 Jun 1;324(Pt 2):673–680. doi: 10.1042/bj3240673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faber H. R., Groom C. R., Baker H. M., Morgan W. T., Smith A., Baker E. N. 1.8 A crystal structure of the C-terminal domain of rabbit serum haemopexin. Structure. 1995 Jun 15;3(6):551–559. doi: 10.1016/s0969-2126(01)00189-7. [DOI] [PubMed] [Google Scholar]
  7. Fearon D. T., Locksley R. M. The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(5258):50–53. doi: 10.1126/science.272.5258.50. [DOI] [PubMed] [Google Scholar]
  8. Inamori K., Saito T., Iwaki D., Nagira T., Iwanaga S., Arisaka F., Kawabata S. A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. J Biol Chem. 1999 Feb 5;274(6):3272–3278. doi: 10.1074/jbc.274.6.3272. [DOI] [PubMed] [Google Scholar]
  9. Ito N., Phillips S. E., Stevens C., Ogel Z. B., McPherson M. J., Keen J. N., Yadav K. D., Knowles P. F. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature. 1991 Mar 7;350(6313):87–90. doi: 10.1038/350087a0. [DOI] [PubMed] [Google Scholar]
  10. Iwanaga S., Kawabata S., Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem. 1998 Jan;123(1):1–15. doi: 10.1093/oxfordjournals.jbchem.a021894. [DOI] [PubMed] [Google Scholar]
  11. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  12. Li J., Brick P., O'Hare M. C., Skarzynski T., Lloyd L. F., Curry V. A., Clark I. M., Bigg H. F., Hazleman B. L., Cawston T. E. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure. 1995 Jun 15;3(6):541–549. doi: 10.1016/s0969-2126(01)00188-5. [DOI] [PubMed] [Google Scholar]
  13. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  14. Medzhitov R., Janeway C. A., Jr Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997 Oct 31;91(3):295–298. doi: 10.1016/s0092-8674(00)80412-2. [DOI] [PubMed] [Google Scholar]
  15. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  16. Murzin A. G. Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins. 1992 Oct;14(2):191–201. doi: 10.1002/prot.340140206. [DOI] [PubMed] [Google Scholar]
  17. Muta T., Seki N., Takaki Y., Hashimoto R., Oda T., Iwanaga A., Tokunaga F., Iwanaga S. Purified horseshoe crab factor G. Reconstitution and characterization of the (1-->3)-beta-D-glucan-sensitive serine protease cascade. J Biol Chem. 1995 Jan 13;270(2):892–897. [PubMed] [Google Scholar]
  18. Nakamura S., Iwanaga S., Harada T., Niwa M. A clottable protein (coagulogen) from amoebocyte lysate of Japanese horseshoe crab (Tachypleus tridentatus). Its isolation and biochemical properties. J Biochem. 1976 Nov;80(5):1011–1021. doi: 10.1093/oxfordjournals.jbchem.a131357. [DOI] [PubMed] [Google Scholar]
  19. Nakamura T., Tokunaga F., Morita T., Iwanaga S., Kusumoto S., Shiba T., Kobayashi T., Inoue K. Intracellular serine-protease zymogen, factor C, from horseshoe crab hemocytes. Its activation by synthetic lipid A analogues and acidic phospholipids. Eur J Biochem. 1988 Sep 1;176(1):89–94. doi: 10.1111/j.1432-1033.1988.tb14254.x. [DOI] [PubMed] [Google Scholar]
  20. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  21. Okino N., Kawabata S., Saito T., Hirata M., Takagi T., Iwanaga S. Purification, characterization, and cDNA cloning of a 27-kDa lectin (L10) from horseshoe crab hemocytes. J Biol Chem. 1995 Dec 29;270(52):31008–31015. doi: 10.1074/jbc.270.52.31008. [DOI] [PubMed] [Google Scholar]
  22. Ruhland G. J., Fiedler F. Occurrence and structure of lipoteichoic acids in the genus Staphylococcus. Arch Microbiol. 1990;154(4):375–379. doi: 10.1007/BF00276534. [DOI] [PubMed] [Google Scholar]
  23. Saito T., Hatada M., Iwanaga S., Kawabata S. A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. J Biol Chem. 1997 Dec 5;272(49):30703–30708. doi: 10.1074/jbc.272.49.30703. [DOI] [PubMed] [Google Scholar]
  24. Saito T., Kawabata S., Hirata M., Iwanaga S. A novel type of limulus lectin-L6. Purification, primary structure, and antibacterial activity. J Biol Chem. 1995 Jun 16;270(24):14493–14499. doi: 10.1074/jbc.270.24.14493. [DOI] [PubMed] [Google Scholar]
  25. Tanaka S., Iwanaga S. Limulus test for detecting bacterial endotoxins. Methods Enzymol. 1993;223:358–364. doi: 10.1016/0076-6879(93)23057-t. [DOI] [PubMed] [Google Scholar]
  26. Turner M. W. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today. 1996 Nov;17(11):532–540. doi: 10.1016/0167-5699(96)10062-1. [DOI] [PubMed] [Google Scholar]
  27. Weis W. I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]
  28. Weis W. I., Drickamer K. Trimeric structure of a C-type mannose-binding protein. Structure. 1994 Dec 15;2(12):1227–1240. doi: 10.1016/S0969-2126(94)00124-3. [DOI] [PubMed] [Google Scholar]
  29. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988 Jun 2;333(6172):426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
  30. Wright C. S. 2.2 A resolution structure analysis of two refined N-acetylneuraminyl-lactose--wheat germ agglutinin isolectin complexes. J Mol Biol. 1990 Oct 20;215(4):635–651. doi: 10.1016/S0022-2836(05)80174-3. [DOI] [PubMed] [Google Scholar]
  31. Xia Z. X., Dai W. W., Xiong J. P., Hao Z. P., Davidson V. L., White S., Mathews F. S. The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. J Biol Chem. 1992 Nov 5;267(31):22289–22297. [PubMed] [Google Scholar]