Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats (original) (raw)

Abstract

1. O2-, K(+)- and pH-sensitive microelectrodes were used to measure extracellular oxygen pressure (PO2), K+ activity (aKo) and pH (pHo) in ventral regions of the medulla oblongata containing respiratory neurons in the in vitro brainstem-spinal cord preparation from 0 to 4-day-old rats. 2. The location of respiratory neurons was mapped by extracellular recordings with conventional microelectrodes, or with the reference barrel of ion-sensitive microelectrodes. The major populations of respiratory neurons were distributed in the ventrolateral reticular formation near the nucleus ambiguus at depths of 300-600 microns. In this area, aKo baseline increased from 3.2 to 3.8 mM whereas steady-state values of PO2 and pHo fell from 120 to 7 mmHg and from 6.9 to 6.7, respectively. 3. During rhythmic inspiratory discharges recorded with suction electrodes from ventral roots of spinal (C3-C5) and cranial (IX, X, XII) nerves, aKo transiently increased by up to 100 microM, and PO2 fell maximally by 0.4 mmHg. During episodes of non-rhythmic neuronal discharge, aKo increased by as much as 0.4 mM and PO2 decreased by about 10 mmHg. In contrast, no variations in pHo could be detected during such activities. 4. Activation of medullary neurons by tetanic electrical stimulation of axonal tracts in the ventrolateral column of the spinal cord at the level of the phrenic motoneuron pool produced aKo elevations of up to 5 mM, decreases of PO2 by up to 50 mmHg, and pHo increases by a maximum of 0.07 pH units. These aKo and PO2 transients were reduced by more than 80% during blockade of synaptic transmission with 5 mM manganese (Mn2+) and completely blocked by 1 microM tetrodotoxin (TTX). 5. The tissue PO2 gradient as well as activity-related decreases of PO2 were completely abolished after block of oxidative cellular metabolism by addition of 2-10 mM cyanide (CN-) to the bathing solution. 6. Inhibition of the Na(+)-K+ pump by addition of 3-50 microM ouabain (3-10 min) caused a reversible increase of aKo by 0.8-3 mM, a delayed recovery of stimulus-induced aKo elevations, and produced a disturbance of the respiratory rhythm. 7. The sensitivity of the respiratory network to oxygen depletion was tested by superfusing the neuraxis with hypoxic solutions gassed with N2 instead of O2 (5-20 min).(ABSTRACT TRUNCATED AT 400 WORDS)

421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arata A., Onimaru H., Homma I. Respiration-related neurons in the ventral medulla of newborn rats in vitro. Brain Res Bull. 1990 Apr;24(4):599–604. doi: 10.1016/0361-9230(90)90165-v. [DOI] [PubMed] [Google Scholar]
  2. Ballanyi K., Grafe P., Reddy M. M., ten Bruggencate G. Different types of potassium transport linked to carbachol and gamma-aminobutyric acid actions in rat sympathetic neurons. Neuroscience. 1984 Jul;12(3):917–927. doi: 10.1016/0306-4522(84)90179-9. [DOI] [PubMed] [Google Scholar]
  3. Ben-Ari Y. Modulation of ATP sensitive K+ channels: a novel strategy to reduce the deleterious effects of anoxia. Adv Exp Med Biol. 1990;268:481–489. doi: 10.1007/978-1-4684-5769-8_53. [DOI] [PubMed] [Google Scholar]
  4. Bingmann D., Kolde G. PO2-profiles in hippocampal slices of the guinea pig. Exp Brain Res. 1982;48(1):89–96. doi: 10.1007/BF00239575. [DOI] [PubMed] [Google Scholar]
  5. Breitwieser G. E., Altamirano A. A., Russell J. M. Effects of pH changes on sodium pump fluxes in squid giant axon. Am J Physiol. 1987 Oct;253(4 Pt 1):C547–C554. doi: 10.1152/ajpcell.1987.253.4.C547. [DOI] [PubMed] [Google Scholar]
  6. Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol. 1990;34(5):401–427. doi: 10.1016/0301-0082(90)90034-e. [DOI] [PubMed] [Google Scholar]
  7. Cohen M. I. Neurogenesis of respiratory rhythm in the mammal. Physiol Rev. 1979 Oct;59(4):1105–1173. doi: 10.1152/physrev.1979.59.4.1105. [DOI] [PubMed] [Google Scholar]
  8. Duffy T. E., Kohle S. J., Vannucci R. C. Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J Neurochem. 1975 Feb;24(2):271–276. doi: 10.1111/j.1471-4159.1975.tb11875.x. [DOI] [PubMed] [Google Scholar]
  9. Fedorko L., Kelly E. N., England S. J. Importance of vagal afferents in determining ventilation in newborn rats. J Appl Physiol (1985) 1988 Sep;65(3):1033–1039. doi: 10.1152/jappl.1988.65.3.1033. [DOI] [PubMed] [Google Scholar]
  10. Fujii T., Baumgärtl H., Lübbers D. W. Limiting section thickness of guinea pig olfactory cortical slices studied from tissue pO2 values and electrical activities. Pflugers Arch. 1982 Mar;393(1):83–87. doi: 10.1007/BF00582396. [DOI] [PubMed] [Google Scholar]
  11. Grote J., Zimmer K., Schubert R. Effects of severe arterial hypocapnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats. Pflugers Arch. 1981 Sep;391(3):195–199. doi: 10.1007/BF00596170. [DOI] [PubMed] [Google Scholar]
  12. Haddad G. G., Donnelly D. F. O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat. J Physiol. 1990 Oct;429:411–428. doi: 10.1113/jphysiol.1990.sp018265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansen A. J. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101–148. doi: 10.1152/physrev.1985.65.1.101. [DOI] [PubMed] [Google Scholar]
  14. Hilaire G., Monteau R., Gauthier P., Rega P., Morin D. Functional significance of the dorsal respiratory group in adult and newborn rats: in vivo and in vitro studies. Neurosci Lett. 1990 Mar 26;111(1-2):133–138. doi: 10.1016/0304-3940(90)90357-f. [DOI] [PubMed] [Google Scholar]
  15. Jiang C., Agulian S., Haddad G. G. O2 tension in adult and neonatal brain slices under several experimental conditions. Brain Res. 1991 Dec 24;568(1-2):159–164. doi: 10.1016/0006-8993(91)91392-e. [DOI] [PubMed] [Google Scholar]
  16. Krnjević K., Walz W. Acidosis and blockade of orthodromic responses caused by anoxia in rat hippocampal slices at different temperatures. J Physiol. 1990 Mar;422:127–144. doi: 10.1113/jphysiol.1990.sp017976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mortola J. P., Rezzonico R., Lanthier C. Ventilation and oxygen consumption during acute hypoxia in newborn mammals: a comparative analysis. Respir Physiol. 1989 Oct;78(1):31–43. doi: 10.1016/0034-5687(89)90140-0. [DOI] [PubMed] [Google Scholar]
  18. Murakoshi T., Suzue T., Tamai S. A pharmacological study on respiratory rhythm in the isolated brainstem-spinal cord preparation of the newborn rat. Br J Pharmacol. 1985 Sep;86(1):95–104. doi: 10.1111/j.1476-5381.1985.tb09439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neubauer J. A., Melton J. E., Edelman N. H. Modulation of respiration during brain hypoxia. J Appl Physiol (1985) 1990 Feb;68(2):441–451. doi: 10.1152/jappl.1990.68.2.441. [DOI] [PubMed] [Google Scholar]
  20. Ransom B. R., Yamate C. L., Connors B. W. Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J Neurosci. 1985 Feb;5(2):532–535. doi: 10.1523/JNEUROSCI.05-02-00532.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Richter D. W., Camerer H., Sonnhof U. Changes in extracellular potassium during the spontaneous activity of medullary respiratory neurones. Pflugers Arch. 1978 Sep 6;376(2):139–149. doi: 10.1007/BF00581577. [DOI] [PubMed] [Google Scholar]
  22. Rigatto H. Control of ventilation in the newborn. Annu Rev Physiol. 1984;46:661–674. doi: 10.1146/annurev.ph.46.030184.003305. [DOI] [PubMed] [Google Scholar]
  23. Schwarzacher S. W., Wilhelm Z., Anders K., Richter D. W. The medullary respiratory network in the rat. J Physiol. 1991 Apr;435:631–644. doi: 10.1113/jphysiol.1991.sp018529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sick T. J., Kreisman N. R. Potassium ion homeostasis in amphibian brain: contribution of active transport and oxidative metabolism. J Neurophysiol. 1981 Jun;45(6):998–1012. doi: 10.1152/jn.1981.45.6.998. [DOI] [PubMed] [Google Scholar]
  25. Sick T. J., Rosenthal M., LaManna J. C., Lutz P. L. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am J Physiol. 1982 Sep;243(3):R281–R288. doi: 10.1152/ajpregu.1982.243.3.R281. [DOI] [PubMed] [Google Scholar]
  26. Smith J. C., Ballanyi K., Richter D. W. Whole-cell patch-clamp recordings from respiratory neurons in neonatal rat brainstem in vitro. Neurosci Lett. 1992 Jan 6;134(2):153–156. doi: 10.1016/0304-3940(92)90504-z. [DOI] [PubMed] [Google Scholar]
  27. Smith J. C., Ellenberger H. H., Ballanyi K., Richter D. W., Feldman J. L. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991 Nov 1;254(5032):726–729. doi: 10.1126/science.1683005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith J. C., Greer J. J., Liu G. S., Feldman J. L. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity. J Neurophysiol. 1990 Oct;64(4):1149–1169. doi: 10.1152/jn.1990.64.4.1149. [DOI] [PubMed] [Google Scholar]
  29. St John W. M. Neurogenesis, control, and functional significance of gasping. J Appl Physiol (1985) 1990 Apr;68(4):1305–1315. doi: 10.1152/jappl.1990.68.4.1305. [DOI] [PubMed] [Google Scholar]
  30. Strupp M., Jund R., Schneider U., Grafe P. Glucose availability and sensitivity to anoxia of isolated rat peroneal nerve. Am J Physiol. 1991 Sep;261(3 Pt 1):E389–E394. doi: 10.1152/ajpendo.1991.261.3.E389. [DOI] [PubMed] [Google Scholar]
  31. Syková E. Extracellular K+ accumulation in the central nervous system. Prog Biophys Mol Biol. 1983;42(2-3):135–189. doi: 10.1016/0079-6107(83)90006-8. [DOI] [PubMed] [Google Scholar]
  32. Trippenbach T., Richter D. W., Acker H. Hypoxia and ion activities within the brain stem of newborn rabbits. J Appl Physiol (1985) 1990 Jun;68(6):2494–2503. doi: 10.1152/jappl.1990.68.6.2494. [DOI] [PubMed] [Google Scholar]
  33. Zheng Y., Barillot J. C., Bianchi A. L. Patterns of membrane potentials and distributions of the medullary respiratory neurons in the decerebrate rat. Brain Res. 1991 Apr 19;546(2):261–270. doi: 10.1016/0006-8993(91)91490-r. [DOI] [PubMed] [Google Scholar]