Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling (original) (raw)

Abstract

During brain development, serotonin (5HT) provides essential neurotrophic signals, and in earlier work, we found that developmental exposure to chlorpyrifos (CPF) elicits short-term changes in 5HT systems. In the present study, we evaluated the effects in adulthood after CPF exposures from the neural tube stage [gestational days (GD) 9-12] and the late gestational period (GD17-20) through postnatal neuronal differentiation and synaptogenesis [postnatal days (PN) 1-4 and 11-14], using treatments below the threshold for systemic toxicity. With exposure on GD9-12, CPF elicited global elevations in 5HT1A and 5HT2 receptors and in the 5HT presynaptic transporter. The GD17-20 treatment elicited larger effects that displayed selectivity for regions with 5HT nerve terminals and that were preferential for males. Although similar receptor up-regulation was seen after PN1-4 exposure, the effects were larger in regions with 5HT cell bodies; in addition, the presynaptic transporter was down-regulated in the nerve terminal zones of females. The PN11-14 exposure had much smaller effects on receptors but still elicited transporter suppression with the same regional and sex selectivity. Although CPF exposure on GD17-20, PN1-4, or PN11-14 altered the ability of 5HT to modulate adenylyl cyclase, this change did not correspond with the effects on 5HT receptors, suggesting an additional set of effects on proteins that transduce the 5HT signal. Our results indicate that CPF elicits long-lasting changes in 5HT receptors, the presynaptic 5HT transporter, and 5HT-mediated signal transduction after exposure in discrete developmental windows that range from the neural tube stage through synaptogenesis. These effects are likely to contribute to neurobehavioral teratology of CPF.

Full Text

The Full Text of this article is available as a PDF (335.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge Justin E., Seidler Frederic J., Meyer Armando, Thillai Indira, Slotkin Theodore A. Serotonergic systems targeted by developmental exposure to chlorpyrifos: effects during different critical periods. Environ Health Perspect. 2003 Nov;111(14):1736–1743. doi: 10.1289/ehp.6489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen Helle Raun, Vinggaard Anne Marie, Rasmussen Thomas Hoj, Gjermandsen Irene Marianne, Bonefeld-Jørgensen Eva Cecilie. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol. 2002 Feb 15;179(1):1–12. doi: 10.1006/taap.2001.9347. [DOI] [PubMed] [Google Scholar]
  3. Auger A. P. Sex differences in the developing brain: crossroads in the phosphorylation of cAMP response element binding protein. J Neuroendocrinol. 2003 Jun;15(6):622–627. doi: 10.1046/j.1365-2826.2003.01041.x. [DOI] [PubMed] [Google Scholar]
  4. Auman J. T., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure targets multiple proteins governing the hepatic adenylyl cyclase signaling cascade: implications for neurotoxicity. Brain Res Dev Brain Res. 2000 May 11;121(1):19–27. doi: 10.1016/s0165-3806(00)00021-3. [DOI] [PubMed] [Google Scholar]
  5. Azmitia E. C. Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull. 2001 Nov 15;56(5):413–424. doi: 10.1016/s0361-9230(01)00614-1. [DOI] [PubMed] [Google Scholar]
  6. Barnes N. M., Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999 Aug;38(8):1083–1152. doi: 10.1016/s0028-3908(99)00010-6. [DOI] [PubMed] [Google Scholar]
  7. Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
  8. Bloomquist Jeffrey R., Barlow Rebecca L., Gillette Jeffrey S., Li Wen, Kirby Michael L. Selective effects of insecticides on nigrostriatal dopaminergic nerve pathways. Neurotoxicology. 2002 Oct;23(4-5):537–544. doi: 10.1016/s0161-813x(02)00031-1. [DOI] [PubMed] [Google Scholar]
  9. Campbell C. G., Seidler F. J., Slotkin T. A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull. 1997;43(2):179–189. doi: 10.1016/s0361-9230(96)00436-4. [DOI] [PubMed] [Google Scholar]
  10. Chow F. A., Seidler F. J., McCook E. C., Slotkin T. A. Adolescent nicotine exposure alters cardiac autonomic responsiveness: beta-adrenergic and m2-muscarinic receptors and their linkage to adenylyl cyclase. Brain Res. 2000 Sep 29;878(1-2):119–126. doi: 10.1016/s0006-8993(00)02697-4. [DOI] [PubMed] [Google Scholar]
  11. Dam K., Garcia S. J., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res. 1999 Aug 5;116(1):9–20. doi: 10.1016/s0165-3806(99)00067-x. [DOI] [PubMed] [Google Scholar]
  12. Dam K., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain Res Dev Brain Res. 1998 Jun 15;108(1-2):39–45. doi: 10.1016/s0165-3806(98)00028-5. [DOI] [PubMed] [Google Scholar]
  13. Das K. P., Barone S., Jr Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217–230. doi: 10.1006/taap.1999.8767. [DOI] [PubMed] [Google Scholar]
  14. Dreyfus C. F. Neurotransmitters and neurotrophins collaborate to influence brain development. Perspect Dev Neurobiol. 1998;5(4):389–399. [PubMed] [Google Scholar]
  15. Duncan M. J., Short J., Wheeler D. L. Comparison of the effects of aging on 5-HT7 and 5-HT1A receptors in discrete regions of the circadian timing system in hamsters. Brain Res. 1999 May 22;829(1-2):39–45. doi: 10.1016/s0006-8993(99)01311-6. [DOI] [PubMed] [Google Scholar]
  16. Gao M. H., Lai N. C., Roth D. M., Zhou J., Zhu J., Anzai T., Dalton N., Hammond H. K. Adenylylcyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation. 1999 Mar 30;99(12):1618–1622. doi: 10.1161/01.cir.99.12.1618. [DOI] [PubMed] [Google Scholar]
  17. Gao M., Ping P., Post S., Insel P. A., Tang R., Hammond H. K. Increased expression of adenylylcyclase type VI proportionately increases beta-adrenergic receptor-stimulated production of cAMP in neonatal rat cardiac myocytes. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1038–1043. doi: 10.1073/pnas.95.3.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garcia S. J., Seidler F. J., Crumpton T. L., Slotkin T. A. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res. 2001 Feb 9;891(1-2):54–68. doi: 10.1016/s0006-8993(00)03189-9. [DOI] [PubMed] [Google Scholar]
  19. Garcia Stephanie J., Seidler Frederic J., Qiao Dan, Slotkin Theodore A. Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. Brain Res Dev Brain Res. 2002 Feb 28;133(2):151–161. doi: 10.1016/s0165-3806(02)00283-3. [DOI] [PubMed] [Google Scholar]
  20. Garcia Stephanie J., Seidler Frederic J., Slotkin Theodore A. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect. 2003 Mar;111(3):297–303. doi: 10.1289/ehp.5791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Güven M., Bayram F., Unlühizarci K., Keleştimur F. Endocrine changes in patients with acute organophosphate poisoning. Hum Exp Toxicol. 1999 Oct;18(10):598–601. doi: 10.1191/096032799678839419. [DOI] [PubMed] [Google Scholar]
  22. Huff R. A., Abou-Donia M. B. In vitro effect of chlorpyrifos oxon on muscarinic receptors and adenylate cyclase. Neurotoxicology. 1995 Summer;16(2):281–290. [PubMed] [Google Scholar]
  23. Huff R. A., Abu-Qare A. W., Abou-Donia M. B. Effects of sub-chronic in vivo chlorpyrifos exposure on muscarinic receptors and adenylate cyclase of rat striatum. Arch Toxicol. 2001 Oct;75(8):480–486. doi: 10.1007/s002040100269. [DOI] [PubMed] [Google Scholar]
  24. Huff R. A., Corcoran J. J., Anderson J. K., Abou-Donia M. B. Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther. 1994 Apr;269(1):329–335. [PubMed] [Google Scholar]
  25. Jamal Goran A., Hansen Stig, Julu Peter O. O. Low level exposures to organophosphorus esters may cause neurotoxicity. Toxicology. 2002 Dec 27;181-182:23–33. doi: 10.1016/s0300-483x(02)00447-x. [DOI] [PubMed] [Google Scholar]
  26. Johnson D. E., Seidler F. J., Slotkin T. A. Early biochemical detection of delayed neurotoxicity resulting from developmental exposure to chloropyrifos. Brain Res Bull. 1998;45(2):143–147. doi: 10.1016/s0361-9230(97)00329-8. [DOI] [PubMed] [Google Scholar]
  27. Karen D. J., Li W., Harp P. R., Gillette J. S., Bloomquist J. R. Striatal dopaminergic pathways as a target for the insecticides permethrin and chlorpyrifos. Neurotoxicology. 2001 Dec;22(6):811–817. doi: 10.1016/s0161-813x(01)00063-8. [DOI] [PubMed] [Google Scholar]
  28. Landrigan P. J., Claudio L., Markowitz S. B., Berkowitz G. S., Brenner B. L., Romero H., Wetmur J. G., Matte T. D., Gore A. C., Godbold J. H. Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Perspect. 1999 Jun;107 (Suppl 3):431–437. doi: 10.1289/ehp.99107s3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Landrigan P. J. Pesticides and polychlorinated biphenyls (PCBs): an analysis of the evidence that they impair children's neurobehavioral development. Mol Genet Metab. 2001 May;73(1):11–17. doi: 10.1006/mgme.2001.3177. [DOI] [PubMed] [Google Scholar]
  30. Lassiter T. L., Padilla S., Mortensen S. R., Chanda S. M., Moser V. C., Barone S., Jr Gestational exposure to chlorpyrifos: apparent protection of the fetus? Toxicol Appl Pharmacol. 1998 Sep;152(1):56–65. doi: 10.1006/taap.1998.8514. [DOI] [PubMed] [Google Scholar]
  31. Lauder J. M. Roles for neurotransmitters in development: possible interaction with drugs during the fetal and neonatal periods. Prog Clin Biol Res. 1985;163C:375–380. [PubMed] [Google Scholar]
  32. Levin E. D., Addy N., Nakajima A., Christopher N. C., Seidler F. J., Slotkin T. A. Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Brain Res Dev Brain Res. 2001 Sep 23;130(1):83–89. doi: 10.1016/s0165-3806(01)00215-2. [DOI] [PubMed] [Google Scholar]
  33. Levin Edward D., Addy Nii, Baruah Avanti, Elias Alana, Christopher N. Channelle, Seidler Frederic J., Slotkin Theodore A. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol. 2002 Nov-Dec;24(6):733–741. doi: 10.1016/s0892-0362(02)00272-6. [DOI] [PubMed] [Google Scholar]
  34. Levitt P., Harvey J. A., Friedman E., Simansky K., Murphy E. H. New evidence for neurotransmitter influences on brain development. Trends Neurosci. 1997 Jun;20(6):269–274. doi: 10.1016/s0166-2236(96)01028-4. [DOI] [PubMed] [Google Scholar]
  35. Leysen J. E., Niemegeers C. J., Van Nueten J. M., Laduron P. M. [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982 Mar;21(2):301–314. [PubMed] [Google Scholar]
  36. Li W., Casida J. E. Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol Lett. 1998 Sep 15;98(3):139–146. doi: 10.1016/s0378-4274(98)00116-7. [DOI] [PubMed] [Google Scholar]
  37. May M. Disturbing behavior: neurotoxic effects in children. Environ Health Perspect. 2000 Jun;108(6):A262–A267. doi: 10.1289/ehp.108-a262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McCarthy M. M. Molecular aspects of sexual differentiation of the rodent brain. Psychoneuroendocrinology. 1994;19(5-7):415–427. doi: 10.1016/0306-4530(94)90029-9. [DOI] [PubMed] [Google Scholar]
  39. McGrath K. E., Seidler F. J., Slotkin T. A. Convergent control of serotonin transporter expression by glucocorticoids and cocaine in fetal and neonatal rat brain. Brain Res Dev Brain Res. 1997 Dec 19;104(1-2):209–213. doi: 10.1016/s0165-3806(97)00144-2. [DOI] [PubMed] [Google Scholar]
  40. Meyer Armando, Seidler Frederic J., Cousins Mandy M., Slotkin Theodore A. Developmental neurotoxicity elicited by gestational exposure to chlorpyrifos: when is adenylyl cyclase a target? Environ Health Perspect. 2003 Dec;111(16):1871–1876. doi: 10.1289/ehp.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mileson B. E., Chambers J. E., Chen W. L., Dettbarn W., Ehrich M., Eldefrawi A. T., Gaylor D. W., Hamernik K., Hodgson E., Karczmar A. G. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol Sci. 1998 Jan;41(1):8–20. doi: 10.1006/toxs.1997.2431. [DOI] [PubMed] [Google Scholar]
  42. Mong J. A., McCarthy M. M. Steroid-induced developmental plasticity in hypothalamic astrocytes: implications for synaptic patterning. J Neurobiol. 1999 Sep 15;40(4):602–619. doi: 10.1002/(sici)1097-4695(19990915)40:4<602::aid-neu14>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  43. Monnet-Tschudi F., Zurich M. G., Schilter B., Costa L. G., Honegger P. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol. 2000 Jun 15;165(3):175–183. doi: 10.1006/taap.2000.8934. [DOI] [PubMed] [Google Scholar]
  44. Moret C., Briley M. Platelet 3H-paroxetine binding to the serotonin transporter is insensitive to changes in central serotonergic innervation in the rat. Psychiatry Res. 1991 Aug;38(2):97–104. doi: 10.1016/0165-1781(91)90035-n. [DOI] [PubMed] [Google Scholar]
  45. Morin D., Sapena R., Zini R., Tillement J. P. Serotonin enhances the beta-adrenergic response in rat brain cortical slices. Eur J Pharmacol. 1992 Mar 12;225(3):273–274. doi: 10.1016/0922-4106(92)90029-u. [DOI] [PubMed] [Google Scholar]
  46. Moser V. C., Padilla S. Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats. Toxicol Appl Pharmacol. 1998 Mar;149(1):107–119. doi: 10.1006/taap.1997.8354. [DOI] [PubMed] [Google Scholar]
  47. Navarro H. A., Kudlacz E. M., Slotkin T. A. Control of adenylate cyclase activity in developing rat heart and liver: effects of prenatal exposure to terbutaline or dexamethasone. Biol Neonate. 1991;60(2):127–136. doi: 10.1159/000243398. [DOI] [PubMed] [Google Scholar]
  48. Olivier K., Jr, Liu J., Pope C. Inhibition of forskolin-stimulated cAMP formation in vitro by paraoxon and chlorpyrifos oxon in cortical slices from neonatal, juvenile, and adult rats. J Biochem Mol Toxicol. 2001;15(5):263–269. doi: 10.1002/jbt.10002. [DOI] [PubMed] [Google Scholar]
  49. Park S., Harrold J. A., Widdowson P. S., Williams G. Increased binding at 5-HT(1A), 5-HT(1B), and 5-HT(2A) receptors and 5-HT transporters in diet-induced obese rats. Brain Res. 1999 Nov 13;847(1):90–97. doi: 10.1016/s0006-8993(99)02055-7. [DOI] [PubMed] [Google Scholar]
  50. Pope C. N., Chakraborti T. K., Chapman M. L., Farrar J. D., Arthun D. Comparison of in vivo cholinesterase inhibition in neonatal and adult rats by three organophosphorothioate insecticides. Toxicology. 1991;68(1):51–61. doi: 10.1016/0300-483x(91)90061-5. [DOI] [PubMed] [Google Scholar]
  51. Pope C. N., Chakraborti T. K. Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposures. Toxicology. 1992;73(1):35–43. doi: 10.1016/0300-483x(92)90168-e. [DOI] [PubMed] [Google Scholar]
  52. Pope C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161–181. doi: 10.1080/109374099281205. [DOI] [PubMed] [Google Scholar]
  53. Qiao D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ Health Perspect. 2001 Sep;109(9):909–913. doi: 10.1289/ehp.01109909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Qiao Dan, Seidler Frederic J., Padilla Stephanie, Slotkin Theodore A. Developmental neurotoxicity of chlorpyrifos: what is the vulnerable period? Environ Health Perspect. 2002 Nov;110(11):1097–1103. doi: 10.1289/ehp.021101097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Raines K. W., Seidler F. J., Slotkin T. A. Alterations in serotonin transporter expression in brain regions of rats exposed neonatally to chlorpyrifos. Brain Res Dev Brain Res. 2001 Sep 23;130(1):65–72. doi: 10.1016/s0165-3806(01)00211-5. [DOI] [PubMed] [Google Scholar]
  56. Ray D. E., Richards P. G. The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicol Lett. 2001 Mar 31;120(1-3):343–351. doi: 10.1016/s0378-4274(01)00266-1. [DOI] [PubMed] [Google Scholar]
  57. Raymond J. R., Mukhin Y. V., Gettys T. W., Garnovskaya M. N. The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol. 1999 Aug;127(8):1751–1764. doi: 10.1038/sj.bjp.0702723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rodier P. M. Structural--functional relationships in experimentally induced brain damage. Prog Brain Res. 1988;73:335–348. doi: 10.1016/S0079-6123(08)60514-2. [DOI] [PubMed] [Google Scholar]
  59. Rovescalli A. C., Brunello N., Perez J., Vitali S., Steardo L., Racagni G. Heterologous sensitization of adenylate cyclase activity by serotonin in the rat cerebral cortex. Eur Neuropsychopharmacol. 1993 Dec;3(4):463–475. doi: 10.1016/0924-977x(93)90271-m. [DOI] [PubMed] [Google Scholar]
  60. Sachana M., Flaskos J., Nikolaidis E., Hargreaves A., Alexaki-Tzivanidou E. Inhibition of rat platelet 5-hydroxytryptamine uptake by chlorpyrifos and carbaryl. Pharmacol Toxicol. 2001 Oct;89(4):195–200. doi: 10.1111/j.0901-9928.2001.890409.x. [DOI] [PubMed] [Google Scholar]
  61. Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
  62. Slotkin T. A., Cousins M. M., Tate C. A., Seidler F. J. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 2001 Jun 1;902(2):229–243. doi: 10.1016/s0006-8993(01)02387-3. [DOI] [PubMed] [Google Scholar]
  63. Slotkin T. A. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect. 1999 Feb;107 (Suppl 1):71–80. doi: 10.1289/ehp.99107s171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Slotkin T. A., Epps T. A., Stenger M. L., Sawyer K. J., Seidler F. J. Cholinergic receptors in heart and brainstem of rats exposed to nicotine during development: implications for hypoxia tolerance and perinatal mortality. Brain Res Dev Brain Res. 1999 Mar 12;113(1-2):1–12. doi: 10.1016/s0165-3806(98)00173-4. [DOI] [PubMed] [Google Scholar]
  65. Slotkin T. A., McCook E. C., Lappi S. E., Seidler F. J. Altered development of basal and forskolin-stimulated adenylate cyclase activity in brain regions of rats exposed to nicotine prenatally. Brain Res Dev Brain Res. 1992 Aug 21;68(2):233–239. doi: 10.1016/0165-3806(92)90065-5. [DOI] [PubMed] [Google Scholar]
  66. Slotkin T. A., Miller D. B., Fumagalli F., McCook E. C., Zhang J., Bissette G., Seidler F. J. Modeling geriatric depression in animals: biochemical and behavioral effects of olfactory bulbectomy in young versus aged rats. J Pharmacol Exp Ther. 1999 Apr;289(1):334–345. [PubMed] [Google Scholar]
  67. Slotkin T. A., Navarro H. A., McCook E. C., Seidler F. J. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues. Life Sci. 1990;47(17):1561–1567. doi: 10.1016/0024-3205(90)90185-t. [DOI] [PubMed] [Google Scholar]
  68. Slotkin T. A., Tate C. A., Cousins M. M., Seidler F. J. Beta-adrenoceptor signaling in the developing brain: sensitization or desensitization in response to terbutaline. Brain Res Dev Brain Res. 2001 Nov 26;131(1-2):113–125. doi: 10.1016/s0165-3806(01)00282-6. [DOI] [PubMed] [Google Scholar]
  69. Song X., Seidler F. J., Saleh J. L., Zhang J., Padilla S., Slotkin T. A. Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol Appl Pharmacol. 1997 Jul;145(1):158–174. doi: 10.1006/taap.1997.8171. [DOI] [PubMed] [Google Scholar]
  70. Song X., Violin J. D., Seidler F. J., Slotkin T. A. Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells. Toxicol Appl Pharmacol. 1998 Jul;151(1):182–191. doi: 10.1006/taap.1998.8424. [DOI] [PubMed] [Google Scholar]
  71. Stockmeier C. A., Shapiro L. A., Dilley G. E., Kolli T. N., Friedman L., Rajkowska G. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci. 1998 Sep 15;18(18):7394–7401. doi: 10.1523/JNEUROSCI.18-18-07394.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Toschke André Michael, Koletzko Berthold, Slikker William, Jr, Hermann Monika, von Kries Rüdiger. Childhood obesity is associated with maternal smoking in pregnancy. Eur J Pediatr. 2002 Jun 28;161(8):445–448. doi: 10.1007/s00431-002-0983-z. [DOI] [PubMed] [Google Scholar]
  73. Turlejski K. Evolutionary ancient roles of serotonin: long-lasting regulation of activity and development. Acta Neurobiol Exp (Wars) 1996;56(2):619–636. doi: 10.55782/ane-1996-1167. [DOI] [PubMed] [Google Scholar]
  74. Usmani Khawja A., Rose Randy L., Hodgson Ernest. Inhibition and activation of the human liver microsomal and human cytochrome P450 3A4 metabolism of testosterone by deployment-related chemicals. Drug Metab Dispos. 2003 Apr;31(4):384–391. doi: 10.1124/dmd.31.4.384. [DOI] [PubMed] [Google Scholar]
  75. Vinggaard A. M., Hnida C., Breinholt V., Larsen J. C. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol In Vitro. 2000 Jun;14(3):227–234. doi: 10.1016/s0887-2333(00)00018-7. [DOI] [PubMed] [Google Scholar]
  76. Ward T. R., Mundy W. R. Organophosphorus compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal cortex. Brain Res Bull. 1996;39(1):49–55. doi: 10.1016/0361-9230(95)02044-6. [DOI] [PubMed] [Google Scholar]
  77. Weiss E. R., Maness P., Lauder J. M. Why do neurotransmitters act like growth factors? Perspect Dev Neurobiol. 1998;5(4):323–335. [PubMed] [Google Scholar]
  78. Whitaker-Azmitia P. M. Role of serotonin and other neurotransmitter receptors in brain development: basis for developmental pharmacology. Pharmacol Rev. 1991 Dec;43(4):553–561. [PubMed] [Google Scholar]
  79. Whitney K. D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol. 1995 Sep;134(1):53–62. doi: 10.1006/taap.1995.1168. [DOI] [PubMed] [Google Scholar]
  80. Xu Z., Seidler F. J., Ali S. F., Slikker W., Jr, Slotkin T. A. Fetal and adolescent nicotine administration: effects on CNS serotonergic systems. Brain Res. 2001 Sep 28;914(1-2):166–178. doi: 10.1016/s0006-8993(01)02797-4. [DOI] [PubMed] [Google Scholar]
  81. Xu Z., Seidler F. J., Cousins M. M., Slikker W., Jr, Slotkin T. A. Adolescent nicotine administration alters serotonin receptors and cell signaling mediated through adenylyl cyclase. Brain Res. 2002 Oct 4;951(2):280–292. doi: 10.1016/s0006-8993(02)03174-8. [DOI] [PubMed] [Google Scholar]
  82. Zeiders J. L., Seidler F. J., Iaccarino G., Koch W. J., Slotkin T. A. Ontogeny of cardiac beta-adrenoceptor desensitization mechanisms: agonist treatment enhances receptor/G-protein transduction rather than eliciting uncoupling. J Mol Cell Cardiol. 1999 Feb;31(2):413–423. doi: 10.1006/jmcc.1998.0875. [DOI] [PubMed] [Google Scholar]
  83. Zeiders J. L., Seidler F. J., Slotkin T. A. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. J Mol Cell Cardiol. 1997 Feb;29(2):603–615. doi: 10.1006/jmcc.1996.0303. [DOI] [PubMed] [Google Scholar]
  84. Zhang Hengshan, Liu Jing, Pope Carey N. Age-related effects of chlorpyrifos on muscarinic receptor-mediated signaling in rat cortex. Arch Toxicol. 2002 Jan;75(11-12):676–684. doi: 10.1007/s00204-001-0309-3. [DOI] [PubMed] [Google Scholar]
  85. von Kries Rüdiger, Toschke André Michael, Koletzko Berthold, Slikker William., Jr Maternal smoking during pregnancy and childhood obesity. Am J Epidemiol. 2002 Nov 15;156(10):954–961. doi: 10.1093/aje/kwf128. [DOI] [PubMed] [Google Scholar]