ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis (original) (raw)
Abstract
The "molecular Coulter counter" concept has been used to study transport of ATP molecules through the nanometer-scale aqueous pore of the voltage-dependent mitochondrial ion channel, VDAC. We examine the ATP-induced current fluctuations and the change in average current through a single fully open channel reconstituted into a planar lipid bilayer. At high salt concentration (1 M NaCl), the addition of ATP reduces both solution conductivity and channel conductance, but the effect on the channel is several times stronger and shows saturation behavior even at 50 mM ATP concentration. These results and simple steric considerations indicate pronounced attraction of ATP molecules to VDAC's aqueous pore and permit us to evaluate the effect of a single ATP molecule on channel conductance. ATP addition also generates an excess noise in the ionic current through the channel. Analysis of this excess noise shows that its spectrum is flat in the accessible frequency interval up to several kilohertz. ATP exchange between the pore and the bulk is fast enough not to display any dispersion at these frequencies. By relating the low-frequency spectral density of the noise to the equilibrium diffusion of ATP molecules in the aqueous pore, we calculate a diffusion coefficient D = (1.6-3.3)10(-11) m2/s. This is one order of magnitude smaller than the ATP diffusion coefficient in the bulk, but it agrees with recent results on ATP flux measurements in multichannel membranes using the luciferin/luciferase method.
Full Text
The Full Text of this article is available as a PDF (132.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberty R. A. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem. 1968 Apr 10;243(7):1337–1343. [PubMed] [Google Scholar]
- Bean C. P. The physics of porous membranes--neutral pores. Membranes. 1972;1:1–54. [PubMed] [Google Scholar]
- Bean R. C., Shepherd W. C., Chan H., Eichner J. Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol. 1969 Jun;53(6):741–757. doi: 10.1085/jgp.53.6.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benz R., Wojtczak L., Bosch W., Brdiczka D. Inhibition of adenine nucleotide transport through the mitochondrial porin by a synthetic polyanion. FEBS Lett. 1988 Apr 11;231(1):75–80. doi: 10.1016/0014-5793(88)80706-3. [DOI] [PubMed] [Google Scholar]
- Bezrukov S. M., Vodyanoy I., Parsegian V. A. Counting polymers moving through a single ion channel. Nature. 1994 Jul 28;370(6487):279–281. doi: 10.1038/370279a0. [DOI] [PubMed] [Google Scholar]
- Bezrukov S. M., Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J. 1993 Jan;64(1):16–25. doi: 10.1016/S0006-3495(93)81336-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bustamante J. O., Oberleithner H., Hanover J. A., Liepins A. Patch clamp detection of transcription factor translocation along the nuclear pore complex channel. J Membr Biol. 1995 Aug;146(3):253–261. doi: 10.1007/BF00233945. [DOI] [PubMed] [Google Scholar]
- Chen D., Eisenberg R. Charges, currents, and potentials in ionic channels of one conformation. Biophys J. 1993 May;64(5):1405–1421. doi: 10.1016/S0006-3495(93)81507-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colombini M. Voltage gating in the mitochondrial channel, VDAC. J Membr Biol. 1989 Oct;111(2):103–111. doi: 10.1007/BF01871775. [DOI] [PubMed] [Google Scholar]
- Colombini M., Yeung C. L., Tung J., König T. The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim Biophys Acta. 1987 Dec 11;905(2):279–286. doi: 10.1016/0005-2736(87)90456-1. [DOI] [PubMed] [Google Scholar]
- Dietmeier K., Hönlinger A., Bömer U., Dekker P. J., Eckerskorn C., Lottspeich F., Kübrich M., Pfanner N. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature. 1997 Jul 10;388(6638):195–200. doi: 10.1038/40663. [DOI] [PubMed] [Google Scholar]
- Eisenberg R. S. Computing the field in proteins and channels. J Membr Biol. 1996 Mar;150(1):1–25. doi: 10.1007/s002329900026. [DOI] [PubMed] [Google Scholar]
- Feher G., Weissman M. Fluctuation spectroscopy: determination of chemical reaction kinetics from the frequency spectrum of fluctuations. Proc Natl Acad Sci U S A. 1973 Mar;70(3):870–875. doi: 10.1073/pnas.70.3.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flörke H., Thinnes F. P., Winkelbach H., Stadtmüller U., Paetzold G., Morys-Wortmann C., Hesse D., Sternbach H., Zimmermann B., Kaufmann-Kolle P. Channel active mammalian porin, purified from crude membrane fractions of human B lymphocytes and bovine skeletal muscle, reversibly binds adenosine triphosphate (ATP). Biol Chem Hoppe Seyler. 1994 Aug;375(8):513–520. doi: 10.1515/bchm3.1994.375.8.513. [DOI] [PubMed] [Google Scholar]
- Freitag H., Benz R., Neupert W. Isolation and properties of the porin of the outer mitochondrial membrane from Neurospora crassa. Methods Enzymol. 1983;97:286–294. doi: 10.1016/0076-6879(83)97140-9. [DOI] [PubMed] [Google Scholar]
- Gellerich F. N., Wagner M., Kapischke M., Wicker U., Brdiczka D. Effect of macromolecules on the regulation of the mitochondrial outer membrane pore and the activity of adenylate kinase in the inter-membrane space. Biochim Biophys Acta. 1993 May 6;1142(3):217–227. doi: 10.1016/0005-2728(93)90150-e. [DOI] [PubMed] [Google Scholar]
- Green W. N., Andersen O. S. Surface charges and ion channel function. Annu Rev Physiol. 1991;53:341–359. doi: 10.1146/annurev.ph.53.030191.002013. [DOI] [PubMed] [Google Scholar]
- Gregg E. C., Steidley K. D. Electrical counting and sizing of mammalian cells in suspension. Biophys J. 1965 Jul;5(4):393–405. doi: 10.1016/S0006-3495(65)86724-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Görlich D., Rapoport T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell. 1993 Nov 19;75(4):615–630. doi: 10.1016/0092-8674(93)90483-7. [DOI] [PubMed] [Google Scholar]
- Heinemann S. H., Sigworth F. J. Estimation of Na+ dwell time in the gramicidin A channel. Na+ ions as blockers of H+ currents. Biochim Biophys Acta. 1989 Dec 11;987(1):8–14. doi: 10.1016/0005-2736(89)90448-3. [DOI] [PubMed] [Google Scholar]
- Heinemann S. H., Sigworth F. J. Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels. Biophys J. 1990 Mar;57(3):499–514. doi: 10.1016/S0006-3495(90)82566-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasianowicz J. J., Brandin E., Branton D., Deamer D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770–13773. doi: 10.1073/pnas.93.24.13770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee A. C., Zizi M., Colombini M. Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6. J Biol Chem. 1994 Dec 9;269(49):30974–30980. [PubMed] [Google Scholar]
- Liu M. Y., Colombini M. Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochim Biophys Acta. 1992 Jan 16;1098(2):255–260. doi: 10.1016/s0005-2728(05)80344-5. [DOI] [PubMed] [Google Scholar]
- Mannella C. A. Structure of the outer mitochondrial membrane: ordered arrays of porelike subunits in outer-membrane fractions from Neurospora crassa mitochondria. J Cell Biol. 1982 Sep;94(3):680–687. doi: 10.1083/jcb.94.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martoglio B., Hofmann M. W., Brunner J., Dobberstein B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell. 1995 Apr 21;81(2):207–214. doi: 10.1016/0092-8674(95)90330-5. [DOI] [PubMed] [Google Scholar]
- Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976 Apr 29;260(5554):799–802. doi: 10.1038/260799a0. [DOI] [PubMed] [Google Scholar]
- Nekolla S., Andersen C., Benz R. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys J. 1994 May;66(5):1388–1397. doi: 10.1016/S0006-3495(94)80929-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsegian V. A., Bezrukov S. M., Vodyanoy I. Watching small molecules move: interrogating ionic channels using neutral solutes. Biosci Rep. 1995 Dec;15(6):503–514. doi: 10.1007/BF01204353. [DOI] [PubMed] [Google Scholar]
- Rosenberg P. A., Finkelstein A. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes. J Gen Physiol. 1978 Sep;72(3):327–340. doi: 10.1085/jgp.72.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rostovtseva T., Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem. 1996 Nov 8;271(45):28006–28008. doi: 10.1074/jbc.271.45.28006. [DOI] [PubMed] [Google Scholar]
- Rostovtseva T., Colombini M. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J. 1997 May;72(5):1954–1962. doi: 10.1016/S0006-3495(97)78841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
- Schatz G. Just follow the acid chain. Nature. 1997 Jul 10;388(6638):121–122. doi: 10.1038/40510. [DOI] [PubMed] [Google Scholar]
- Simon S. M., Blobel G. A protein-conducting channel in the endoplasmic reticulum. Cell. 1991 May 3;65(3):371–380. doi: 10.1016/0092-8674(91)90455-8. [DOI] [PubMed] [Google Scholar]