Unzipping DNA with optical tweezers: high sequence sensitivity and force flips (original) (raw)

Abstract

Force measurements are performed on single DNA molecules with an optical trapping interferometer that combines subpiconewton force resolution and millisecond time resolution. A molecular construction is prepared for mechanically unzipping several thousand-basepair DNA sequences in an in vitro configuration. The force signals corresponding to opening and closing the double helix at low velocity are studied experimentally and are compared to calculations assuming thermal equilibrium. We address the effect of the stiffness on the basepair sensitivity and consider fluctuations in the force signal. With respect to earlier work performed with soft microneedles, we obtain a very significant increase in basepair sensitivity: presently, sequence features appearing at a scale of 10 basepairs are observed. When measured with the optical trap the unzipping force exhibits characteristic flips between different values at specific positions that are determined by the base sequence. This behavior is attributed to bistabilities in the position of the opening fork; the force flips directly reflect transitions between different states involved in the time-averaging of the molecular system.

Full Text

The Full Text of this article is available as a PDF (691.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allemand J. F., Bensimon D., Lavery R., Croquette V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14152–14157. doi: 10.1073/pnas.95.24.14152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D., David G. B., Nomarski G. The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk. 1969 Nov;69(4):193–221. [PubMed] [Google Scholar]
  3. Allersma M. W., Gittes F., deCastro M. J., Stewart R. J., Schmidt C. F. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J. 1998 Feb;74(2 Pt 1):1074–1085. doi: 10.1016/S0006-3495(98)74031-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bustamante C., Smith S. B., Liphardt J., Smith D. Single-molecule studies of DNA mechanics. Curr Opin Struct Biol. 2000 Jun;10(3):279–285. doi: 10.1016/s0959-440x(00)00085-3. [DOI] [PubMed] [Google Scholar]
  5. Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
  7. Cocco S., Monasson R., Marko J. F. Force and kinetic barriers to unzipping of the DNA double helix. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8608–8613. doi: 10.1073/pnas.151257598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davenport R. J., Wuite G. J., Landick R., Bustamante C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science. 2000 Mar 31;287(5462):2497–2500. doi: 10.1126/science.287.5462.2497. [DOI] [PubMed] [Google Scholar]
  9. Essevaz-Roulet B., Bockelmann U., Heslot F. Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11935–11940. doi: 10.1073/pnas.94.22.11935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gittes F., Schmidt C. F. Signals and noise in micromechanical measurements. Methods Cell Biol. 1998;55:129–156. doi: 10.1016/s0091-679x(08)60406-9. [DOI] [PubMed] [Google Scholar]
  11. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  12. Leger J. F., Robert J., Bourdieu L., Chatenay D., Marko J. F. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12295–12299. doi: 10.1073/pnas.95.21.12295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liphardt J., Onoa B., Smith S. B., Tinoco I., Jr, Bustamante C. Reversible unfolding of single RNA molecules by mechanical force. Science. 2001 Apr 27;292(5517):733–737. doi: 10.1126/science.1058498. [DOI] [PubMed] [Google Scholar]
  14. Lubensky D. K., Nelson D. R. Pulling pinned polymers and unzipping DNA. Phys Rev Lett. 2000 Aug 14;85(7):1572–1575. doi: 10.1103/PhysRevLett.85.1572. [DOI] [PubMed] [Google Scholar]
  15. Magazzú G., Bottaro G., Cataldo F., Iacono G., Di Donato F., Patane R., Cavataio F., Maltese I., Romano C., Arco A. Increasing incidence of childhood celiac disease in Sicily: results of a multicenter study. Acta Paediatr. 1994 Oct;83(10):1065–1069. doi: 10.1111/j.1651-2227.1994.tb12987.x. [DOI] [PubMed] [Google Scholar]
  16. Nelson P. Transport of torsional stress in DNA. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14342–14347. doi: 10.1073/pnas.96.25.14342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
  18. SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simmons R. M., Finer J. T., Chu S., Spudich J. A. Quantitative measurements of force and displacement using an optical trap. Biophys J. 1996 Apr;70(4):1813–1822. doi: 10.1016/S0006-3495(96)79746-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  21. Smith S. B., Finzi L., Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992 Nov 13;258(5085):1122–1126. doi: 10.1126/science.1439819. [DOI] [PubMed] [Google Scholar]
  22. Strick T. R., Croquette V., Bensimon D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature. 2000 Apr 20;404(6780):901–904. doi: 10.1038/35009144. [DOI] [PubMed] [Google Scholar]
  23. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  24. Viovy J. L., Heller C., Caron F., Cluzel P., Chatenay D. Séquençage de l'ADN par ouverture mécanique de la double hélice: une évaluation théorique. C R Acad Sci III. 1994 Sep;317(9):795–800. [PubMed] [Google Scholar]
  25. Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wuite G. J., Smith S. B., Young M., Keller D., Bustamante C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature. 2000 Mar 2;404(6773):103–106. doi: 10.1038/35003614. [DOI] [PubMed] [Google Scholar]
  27. Yin H., Wang M. D., Svoboda K., Landick R., Block S. M., Gelles J. Transcription against an applied force. Science. 1995 Dec 8;270(5242):1653–1657. doi: 10.1126/science.270.5242.1653. [DOI] [PubMed] [Google Scholar]