Molecular dynamics simulations of solvated yeast tRNA(Asp) (original) (raw)
Abstract
Transfer RNA molecules are involved in a variety of biological processes, implying complex recognition events with proteins and other RNAs. From a structural point of view, tRNAs constitute a reference system for studying RNA folding and architecture. A deeper understanding of their structural and functional properties will derive from our ability to model accurately their dynamical behavior. We present the first dynamical model of a fully neutralized and solvated tRNA molecule over a 500-ps time scale. Starting from the crystallographic structure of yeast tRNA(Asp), the 75-nucleotide molecule was modeled with 8055 water molecules and 74 NH4+ counterions, using the AMBER4.1 program and the particle mesh Ewald (PME) method for the treatment of long-range electrostatic interactions. The calculations led to a dynamically stable model of the tRNA molecule. During the simulation, all secondary and tertiary base pairs are maintained while a certain lability of base triples in the tRNA core is observed. This lability was interpreted as resulting from intrinsic factors associated with the "weaker" hydrogen bonding patterns seen in these base triples and from an altered ionic environment of the tRNA molecule. Calculated thermal factors are used to compare the dynamics of the tRNA in solution and in the crystal. The present molecular dynamics simulation of a complex and highly charged nucleic acid molecule attests to the fact that simulation methods are now able to investigate not only the dynamics of proteins, but also that of large RNA molecules. Thus they also provide a basis for further investigations on the structural and functional effects of chemical and posttranscriptionally modified nucleotides as well as on ionic environmental effects.
Full Text
The Full Text of this article is available as a PDF (442.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano M., Kawakami M. Assignment of the magnetic resonances of the imino protons and methyl protons of Bombyx mori tRNA(GlyGCC) and the effect of ion binding on its structure. Eur J Biochem. 1992 Dec 15;210(3):671–681. doi: 10.1111/j.1432-1033.1992.tb17468.x. [DOI] [PubMed] [Google Scholar]
- Aphasizhev R., Théobald-Dietrich A., Kostyuk D., Kochetkov S. N., Kisselev L., Giegé R., Fasiolo F. Structure and aminoacylation capacities of tRNA transcripts containing deoxyribonucleotides. RNA. 1997 Aug;3(8):893–904. [PMC free article] [PubMed] [Google Scholar]
- Auffinger P., Louise-May S., Westhof E. Hydration of C-H groups in tRNA. Faraday Discuss. 1996;(103):151–173. doi: 10.1039/fd9960300151. [DOI] [PubMed] [Google Scholar]
- Auffinger P., Westhof E. H-bond stability in the tRNA(Asp) anticodon hairpin: 3 ns of multiple molecular dynamics simulations. Biophys J. 1996 Aug;71(2):940–954. doi: 10.1016/S0006-3495(96)79298-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auffinger P., Westhof E. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. J Mol Biol. 1997 Jun 13;269(3):326–341. doi: 10.1006/jmbi.1997.1022. [DOI] [PubMed] [Google Scholar]
- Auffinger P., Westhof E. Rules governing the orientation of the 2'-hydroxyl group in RNA. J Mol Biol. 1997 Nov 21;274(1):54–63. doi: 10.1006/jmbi.1997.1370. [DOI] [PubMed] [Google Scholar]
- Auffinger P., Westhof E. Simulations of the molecular dynamics of nucleic acids. Curr Opin Struct Biol. 1998 Apr;8(2):227–236. doi: 10.1016/s0959-440x(98)80044-4. [DOI] [PubMed] [Google Scholar]
- Berman H. M., Olson W. K., Beveridge D. L., Westbrook J., Gelbin A., Demeny T., Hsieh S. H., Srinivasan A. R., Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992 Sep;63(3):751–759. doi: 10.1016/S0006-3495(92)81649-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brion P., Westhof E. Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct. 1997;26:113–137. doi: 10.1146/annurev.biophys.26.1.113. [DOI] [PubMed] [Google Scholar]
- Caspar D. L. Problems in simulating macromolecular movements. Structure. 1995 Apr 15;3(4):327–329. doi: 10.1016/s0969-2126(01)00163-0. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Choi B. S., Redfield A. G. NMR study of isoleucine transfer RNA from Thermus thermophilus. Biochemistry. 1986 Apr 8;25(7):1529–1534. doi: 10.1021/bi00355a010. [DOI] [PubMed] [Google Scholar]
- Choi B. S., Redfield A. G. Nuclear magnetic resonance observation of the triple interaction between A9 and AU12 in yeast tRNAPhe. Nucleic Acids Res. 1985 Jul 25;13(14):5249–5254. doi: 10.1093/nar/13.14.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi B. S., Redfield A. G. Proton exchange and basepair kinetics of yeast tRNA(Phe) and tRNA(Asp1). J Biochem. 1995 Mar;117(3):515–520. doi: 10.1093/oxfordjournals.jbchem.a124738. [DOI] [PubMed] [Google Scholar]
- Clarage J. B., Romo T., Andrews B. K., Pettitt B. M., Phillips G. N., Jr A sampling problem in molecular dynamics simulations of macromolecules. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3288–3292. doi: 10.1073/pnas.92.8.3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
- Dallas A., Moore P. B. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997 Dec 15;5(12):1639–1653. doi: 10.1016/s0969-2126(97)00311-0. [DOI] [PubMed] [Google Scholar]
- Derewenda Z. S., Lee L., Derewenda U. The occurrence of C-H...O hydrogen bonds in proteins. J Mol Biol. 1995 Sep 15;252(2):248–262. doi: 10.1006/jmbi.1995.0492. [DOI] [PubMed] [Google Scholar]
- Dock-Bregeon A. C., Chevrier B., Podjarny A., Johnson J., de Bear J. S., Gough G. R., Gilham P. T., Moras D. Crystallographic structure of an RNA helix: [U(UA)6A]2. J Mol Biol. 1989 Oct 5;209(3):459–474. doi: 10.1016/0022-2836(89)90010-7. [DOI] [PubMed] [Google Scholar]
- Friederich M. W., Vacano E., Hagerman P. J. Global flexibility of tertiary structure in RNA: yeast tRNAPhe as a model system. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3572–3577. doi: 10.1073/pnas.95.7.3572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gautheret D., Damberger S. H., Gutell R. R. Identification of base-triples in RNA using comparative sequence analysis. J Mol Biol. 1995 Apr 21;248(1):27–43. doi: 10.1006/jmbi.1995.0200. [DOI] [PubMed] [Google Scholar]
- Gautheret D., Gutell R. R. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation. Nucleic Acids Res. 1997 Apr 15;25(8):1559–1564. doi: 10.1093/nar/25.8.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall K. B., Sampson J. R., Uhlenbeck O. C., Redfield A. G. Structure of an unmodified tRNA molecule. Biochemistry. 1989 Jul 11;28(14):5794–5801. doi: 10.1021/bi00440a014. [DOI] [PubMed] [Google Scholar]
- Heerschap A., Haasnoot C. A., Hilbers C. W. Nuclear magnetic resonance studies on yeast tRNAPhe I. Assignment of the iminoproton resonances of the acceptor and D stem by means of Nuclear Overhauser Effect experiments at 500 MHz. Nucleic Acids Res. 1982 Nov 11;10(21):6981–7000. doi: 10.1093/nar/10.21.6981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermann T., Auffinger P., Scott W. G., Westhof E. Evidence for a hydroxide ion bridging two magnesium ions at the active site of the hammerhead ribozyme. Nucleic Acids Res. 1997 Sep 1;25(17):3421–3427. doi: 10.1093/nar/25.17.3421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermann T., Auffinger P., Westhof E. Molecular dynamics investigations of hammerhead ribozyme RNA. Eur Biophys J. 1998;27(2):153–165. doi: 10.1007/s002490050121. [DOI] [PubMed] [Google Scholar]
- Hou Y. M. Structural elements that contribute to an unusual tertiary interaction in a transfer RNA. Biochemistry. 1994 Apr 19;33(15):4677–4681. doi: 10.1021/bi00181a603. [DOI] [PubMed] [Google Scholar]
- Hyde E. I., Reid B. R. Assignment of the low-field 1H NMR spectrum of Escherichia coli tRNAPhe using nuclear Overhauser effects. Biochemistry. 1985 Jul 30;24(16):4307–4314. doi: 10.1021/bi00337a009. [DOI] [PubMed] [Google Scholar]
- Hyde E. I., Reid B. R. NMR studies of ion binding to Escherichia coli tRNAPhe. Biochemistry. 1985 Jul 30;24(16):4315–4325. doi: 10.1021/bi00337a010. [DOI] [PubMed] [Google Scholar]
- Hünenberger P. H., Mark A. E., van Gunsteren W. F. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J Mol Biol. 1995 Sep 29;252(4):492–503. doi: 10.1006/jmbi.1995.0514. [DOI] [PubMed] [Google Scholar]
- Jack A., Ladner J. E., Rhodes D., Brown R. S., Klug A. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol. 1977 Apr 15;111(3):315–328. doi: 10.1016/s0022-2836(77)80054-5. [DOI] [PubMed] [Google Scholar]
- Kholod N. S., Pan'kova N. V., Mayorov S. G., Krutilina A. I., Shlyapnikov M. G., Kisselev L. L., Ksenzenko V. N. Transfer RNA(Phe) isoacceptors possess non-identical set of identity elements at high and low Mg2+ concentration. FEBS Lett. 1997 Jul 7;411(1):123–127. doi: 10.1016/s0014-5793(97)00608-x. [DOI] [PubMed] [Google Scholar]
- Kintanar A., Yue D., Horowitz J. Effect of nucleoside modifications on the structure and thermal stability of Escherichia coli valine tRNA. Biochimie. 1994;76(12):1192–1204. doi: 10.1016/0300-9084(94)90049-3. [DOI] [PubMed] [Google Scholar]
- Kochoyan M., Leroy J. L., Guéron M. Processes of base-pair opening and proton exchange in Z-DNA. Biochemistry. 1990 May 22;29(20):4799–4805. doi: 10.1021/bi00472a008. [DOI] [PubMed] [Google Scholar]
- Leroy J. L., Bolo N., Figueroa N., Plateau P., Guérón M. Internal motions of transfer RNA: a study of exchanging protons by magnetic resonance. J Biomol Struct Dyn. 1985 Feb;2(5):915–939. doi: 10.1080/07391102.1985.10507609. [DOI] [PubMed] [Google Scholar]
- Louise-May S., Auffinger P., Westhof E. Calculations of nucleic acid conformations. Curr Opin Struct Biol. 1996 Jun;6(3):289–298. doi: 10.1016/s0959-440x(96)80046-7. [DOI] [PubMed] [Google Scholar]
- Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
- Moe J. G., Russu I. M. Proton exchange and base-pair opening kinetics in 5'-d(CGCGAATTCGCG)-3' and related dodecamers. Nucleic Acids Res. 1990 Feb 25;18(4):821–827. doi: 10.1093/nar/18.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moras D., Comarmond M. B., Fischer J., Weiss R., Thierry J. C., Ebel J. P., Giegé R. Crystal structure of yeast tRNAAsp. Nature. 1980 Dec 25;288(5792):669–674. doi: 10.1038/288669a0. [DOI] [PubMed] [Google Scholar]
- Moras D., Dock A. C., Dumas P., Westhof E., Romby P., Ebel J. P., Giegé R. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition. Proc Natl Acad Sci U S A. 1986 Feb;83(4):932–936. doi: 10.1073/pnas.83.4.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel D. J., Suri A. K., Jiang F., Jiang L., Fan P., Kumar R. A., Nonin S. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol. 1997 Oct 10;272(5):645–664. doi: 10.1006/jmbi.1997.1281. [DOI] [PubMed] [Google Scholar]
- Pearlman D. A., Kim S. H. Atomic charges for DNA constituents derived from single-crystal X-ray diffraction data. J Mol Biol. 1990 Jan 5;211(1):171–187. doi: 10.1016/0022-2836(90)90019-I. [DOI] [PubMed] [Google Scholar]
- Perret V., Garcia A., Puglisi J., Grosjean H., Ebel J. P., Florentz C., Giegé R. Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie. 1990 Oct;72(10):735–743. doi: 10.1016/0300-9084(90)90158-d. [DOI] [PubMed] [Google Scholar]
- Quigley G. J., Rich A. Structural domains of transfer RNA molecules. Science. 1976 Nov 19;194(4267):796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
- Reid S. S., Cowan J. A. Biostructural chemistry of magnesium ion: characterization of the weak binding sites on tRNA(Phe)(yeast). Implications for conformational change and activity. Biochemistry. 1990 Jun 26;29(25):6025–6032. doi: 10.1021/bi00477a021. [DOI] [PubMed] [Google Scholar]
- Schindelin H., Zhang M., Bald R., Fürste J. P., Erdmann V. A., Heinemann U. Crystal structure of an RNA dodecamer containing the Escherichia coli Shine-Dalgarno sequence. J Mol Biol. 1995 Jun 9;249(3):595–603. doi: 10.1006/jmbi.1995.0321. [DOI] [PubMed] [Google Scholar]
- Serebrov V., Vassilenko K., Kholod N., Gross H. J., Kisselev L. Mg2+ binding and structural stability of mature and in vitro synthesized unmodified Escherichia coli tRNAPhe. Nucleic Acids Res. 1998 Jun 1;26(11):2723–2728. doi: 10.1093/nar/26.11.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein A., Crothers D. M. Conformational changes of transfer RNA. The role of magnesium(II). Biochemistry. 1976 Jan 13;15(1):160–168. doi: 10.1021/bi00646a025. [DOI] [PubMed] [Google Scholar]
- Stein A., Crothers D. M. Equilibrium binding of magnesium(II) by Escherichia coli tRNAfMet. Biochemistry. 1976 Jan 13;15(1):157–160. doi: 10.1021/bi00646a024. [DOI] [PubMed] [Google Scholar]
- Wahl M. C., Sundaralingam M. C-H...O hydrogen bonding in biology. Trends Biochem Sci. 1997 Mar;22(3):97–102. doi: 10.1016/s0968-0004(97)01004-9. [DOI] [PubMed] [Google Scholar]
- Weerasinghe S., Smith P. E., Pettitt B. M. Structure and stability of a model pyrimidine-purine-purine DNA triple helix with a GC.T mismatch by simulation. Biochemistry. 1995 Dec 19;34(50):16269–16278. doi: 10.1021/bi00050a006. [DOI] [PubMed] [Google Scholar]
- Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985 Jul 5;184(1):119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
- Westhof E., Dumas P., Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):112–123. [PubMed] [Google Scholar]
- Westhof E., Sundaralingam M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry. 1986 Aug 26;25(17):4868–4878. doi: 10.1021/bi00365a022. [DOI] [PubMed] [Google Scholar]
- Young M. A., Beveridge D. L. Molecular dynamics simulations of an oligonucleotide duplex with adenine tracts phased by a full helix turn. J Mol Biol. 1998 Aug 28;281(4):675–687. doi: 10.1006/jmbi.1998.1962. [DOI] [PubMed] [Google Scholar]
- Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue D., Kintanar A., Horowitz J. Nucleoside modifications stabilize Mg2+ binding in Escherichia coli tRNA(Val): an imino proton NMR investigation. Biochemistry. 1994 Aug 2;33(30):8905–8911. doi: 10.1021/bi00196a007. [DOI] [PubMed] [Google Scholar]