The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae (original) (raw)

Abstract

Clathrin-binding adaptors play critical roles for endocytosis in multicellular organisms, but their roles in budding yeast have remained unclear. To address this question, we created a quadruple mutant yeast strain lacking the genes encoding the candidate clathrin adaptors Yap1801p, Yap1802p, and Ent2p and containing a truncated version of Ent1p, Ent1DeltaCBMp, missing its clathrin-binding motif. This strain was viable and competent for endocytosis, suggesting the existence of other redundant adaptor-like factors. To identify these factors, we mutagenized the quadruple clathrin adaptor mutant strain and selected cells that were viable in the presence of full-length Ent1p, but inviable with only Ent1DeltaCBMp; these strains were named Rcb (requires clathrin binding). One mutant strain, rcb432, contained a mutation in SLA2 that resulted in lower levels of a truncated protein lacking the F-actin binding talin homology domain. Analyses of this sla2 mutant showed that the talin homology domain is required for endocytosis at elevated temperature, that SLA2 exhibits genetic interactions with both ENT1 and ENT2, and that the clathrin adaptors and Sla2p together regulate the actin cytoskeleton and revealed conditions under which Yap1801p and Yap1802p contribute to viability. Together, our data support the view that Sla2p is an adaptor that links actin to clathrin and endocytosis.

Full Text

The Full Text of this article is available as a PDF (387.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar Rubén Claudio, Watson Hadiya A., Wendland Beverly. The yeast Epsin Ent1 is recruited to membranes through multiple independent interactions. J Biol Chem. 2003 Jan 14;278(12):10737–10743. doi: 10.1074/jbc.M211622200. [DOI] [PubMed] [Google Scholar]
  2. Ayscough K. R., Eby J. J., Lila T., Dewar H., Kozminski K. G., Drubin D. G. Sla1p is a functionally modular component of the yeast cortical actin cytoskeleton required for correct localization of both Rho1p-GTPase and Sla2p, a protein with talin homology. Mol Biol Cell. 1999 Apr;10(4):1061–1075. doi: 10.1091/mbc.10.4.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baggett J. J., Wendland B. Clathrin function in yeast endocytosis. Traffic. 2001 May;2(5):297–302. doi: 10.1034/j.1600-0854.2001.002005297.x. [DOI] [PubMed] [Google Scholar]
  4. Cope M. J., Yang S., Shang C., Drubin D. G. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J Cell Biol. 1999 Mar 22;144(6):1203–1218. doi: 10.1083/jcb.144.6.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Damke H., Baba T., van der Bliek A. M., Schmid S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol. 1995 Oct;131(1):69–80. doi: 10.1083/jcb.131.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dell'Angelica E. C. Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol. 2001 Aug;11(8):315–318. doi: 10.1016/s0962-8924(01)02043-8. [DOI] [PubMed] [Google Scholar]
  7. Engqvist-Goldstein A. E., Kessels M. M., Chopra V. S., Hayden M. R., Drubin D. G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J Cell Biol. 1999 Dec 27;147(7):1503–1518. doi: 10.1083/jcb.147.7.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engqvist-Goldstein A. E., Warren R. A., Kessels M. M., Keen J. H., Heuser J., Drubin D. G. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J Cell Biol. 2001 Sep 17;154(6):1209–1223. doi: 10.1083/jcb.200106089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ford Marijn G. J., Mills Ian G., Peter Brian J., Vallis Yvonne, Praefcke Gerrit J. K., Evans Philip R., McMahon Harvey T. Curvature of clathrin-coated pits driven by epsin. Nature. 2002 Sep 26;419(6905):361–366. doi: 10.1038/nature01020. [DOI] [PubMed] [Google Scholar]
  10. Henry Kenneth R., D'Hondt Kathleen, Chang JiSuk, Newpher Thomas, Huang Kristen, Hudson R. Tod, Riezman Howard, Lemmon Sandra K. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol Biol Cell. 2002 Aug;13(8):2607–2625. doi: 10.1091/mbc.E02-01-0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hicke L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 1999 Mar;9(3):107–112. doi: 10.1016/s0962-8924(98)01491-3. [DOI] [PubMed] [Google Scholar]
  12. Holtzman D. A., Yang S., Drubin D. G. Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J Cell Biol. 1993 Aug;122(3):635–644. doi: 10.1083/jcb.122.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Howard James P., Hutton Jenna L., Olson John M., Payne Gregory S. Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis. J Cell Biol. 2002 Apr 8;157(2):315–326. doi: 10.1083/jcb.200110027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang K. M., D'Hondt K., Riezman H., Lemmon S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J. 1999 Jul 15;18(14):3897–3908. doi: 10.1093/emboj/18.14.3897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. King Stephen J., Brown Christa L., Maier Kerstin C., Quintyne Nicholas J., Schroer Trina A. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol Biol Cell. 2003 Oct 17;14(12):5089–5097. doi: 10.1091/mbc.E03-01-0025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Legendre-Guillemin Valerie, Metzler Martina, Charbonneau Martine, Gan Lu, Chopra Vikramjit, Philie Jacynthe, Hayden Michael R., McPherson Peter S. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J Biol Chem. 2002 Mar 11;277(22):19897–19904. doi: 10.1074/jbc.M112310200. [DOI] [PubMed] [Google Scholar]
  17. McCann R. O., Craig S. W. Functional genomic analysis reveals the utility of the I/LWEQ module as a predictor of protein:actin interaction. Biochem Biophys Res Commun. 1999 Dec 9;266(1):135–140. doi: 10.1006/bbrc.1999.1776. [DOI] [PubMed] [Google Scholar]
  18. McCann R. O., Craig S. W. The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5679–5684. doi: 10.1073/pnas.94.11.5679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Metzler M., Legendre-Guillemin V., Gan L., Chopra V., Kwok A., McPherson P. S., Hayden M. R. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J Biol Chem. 2001 Aug 21;276(42):39271–39276. doi: 10.1074/jbc.C100401200. [DOI] [PubMed] [Google Scholar]
  20. Munn A. L., Stevenson B. J., Geli M. I., Riezman H. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol Biol Cell. 1995 Dec;6(12):1721–1742. doi: 10.1091/mbc.6.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Na S., Hincapie M., McCusker J. H., Haber J. E. MOP2 (SLA2) affects the abundance of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem. 1995 Mar 24;270(12):6815–6823. doi: 10.1074/jbc.270.12.6815. [DOI] [PubMed] [Google Scholar]
  22. Payne G. S., Hasson T. B., Hasson M. S., Schekman R. Genetic and biochemical characterization of clathrin-deficient Saccharomyces cerevisiae. Mol Cell Biol. 1987 Nov;7(11):3888–3898. doi: 10.1128/mcb.7.11.3888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Payne G. S., Schekman R. A test of clathrin function in protein secretion and cell growth. Science. 1985 Nov 29;230(4729):1009–1014. doi: 10.1126/science.2865811. [DOI] [PubMed] [Google Scholar]
  24. Qualmann B., Kessels M. M., Kelly R. B. Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol. 2000 Sep 4;150(5):F111–F116. doi: 10.1083/jcb.150.5.f111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ramjaun A. R., McPherson P. S. Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J Neurochem. 1998 Jun;70(6):2369–2376. doi: 10.1046/j.1471-4159.1998.70062369.x. [DOI] [PubMed] [Google Scholar]
  26. Raths S., Rohrer J., Crausaz F., Riezman H. end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J Cell Biol. 1993 Jan;120(1):55–65. doi: 10.1083/jcb.120.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roth A. F., Davis N. G. Ubiquitination of the PEST-like endocytosis signal of the yeast a-factor receptor. J Biol Chem. 2000 Mar 17;275(11):8143–8153. doi: 10.1074/jbc.275.11.8143. [DOI] [PubMed] [Google Scholar]
  28. Roth A. F., Sullivan D. M., Davis N. G. A large PEST-like sequence directs the ubiquitination, endocytosis, and vacuolar degradation of the yeast a-factor receptor. J Cell Biol. 1998 Aug 24;142(4):949–961. doi: 10.1083/jcb.142.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Santolini E., Salcini A. E., Kay B. K., Yamabhai M., Di Fiore P. P. The EH network. Exp Cell Res. 1999 Nov 25;253(1):186–209. doi: 10.1006/excr.1999.4694. [DOI] [PubMed] [Google Scholar]
  30. Schafer Dorothy A. Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol. 2002 Feb;14(1):76–81. doi: 10.1016/s0955-0674(01)00297-6. [DOI] [PubMed] [Google Scholar]
  31. Schmid S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem. 1997;66:511–548. doi: 10.1146/annurev.biochem.66.1.511. [DOI] [PubMed] [Google Scholar]
  32. Shih S. C., Sloper-Mould K. E., Hicke L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 2000 Jan 17;19(2):187–198. doi: 10.1093/emboj/19.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shih Susan C., Katzmann David J., Schnell Joshua D., Sutanto Myra, Emr Scott D., Hicke Linda. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol. 2002 May;4(5):389–393. doi: 10.1038/ncb790. [DOI] [PubMed] [Google Scholar]
  34. Tan P. K., Davis N. G., Sprague G. F., Payne G. S. Clathrin facilitates the internalization of seven transmembrane segment receptors for mating pheromones in yeast. J Cell Biol. 1993 Dec;123(6 Pt 2):1707–1716. doi: 10.1083/jcb.123.6.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ungewickell E., Branton D. Assembly units of clathrin coats. Nature. 1981 Jan 29;289(5796):420–422. doi: 10.1038/289420a0. [DOI] [PubMed] [Google Scholar]
  36. Urbanowski J. L., Piper R. C. Ubiquitin sorts proteins into the intralumenal degradative compartment of the late-endosome/vacuole. Traffic. 2001 Sep;2(9):622–630. doi: 10.1034/j.1600-0854.2001.20905.x. [DOI] [PubMed] [Google Scholar]
  37. Wendland B., Emr S. D. Pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J Cell Biol. 1998 Apr 6;141(1):71–84. doi: 10.1083/jcb.141.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wendland B., Steece K. E., Emr S. D. Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J. 1999 Aug 16;18(16):4383–4393. doi: 10.1093/emboj/18.16.4383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wendland Beverly. Epsins: adaptors in endocytosis? Nat Rev Mol Cell Biol. 2002 Dec;3(12):971–977. doi: 10.1038/nrm970. [DOI] [PubMed] [Google Scholar]
  40. Wesp A., Hicke L., Palecek J., Lombardi R., Aust T., Munn A. L., Riezman H. End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol Biol Cell. 1997 Nov;8(11):2291–2306. doi: 10.1091/mbc.8.11.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yang S., Cope M. J., Drubin D. G. Sla2p is associated with the yeast cortical actin cytoskeleton via redundant localization signals. Mol Biol Cell. 1999 Jul;10(7):2265–2283. doi: 10.1091/mbc.10.7.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]