Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci (original) (raw)
Abstract
The problem of locating multiple interacting quantitative trait loci (QTL) can be addressed as a multiple regression problem, with marker genotypes being the regressor variables. An important and difficult part in fitting such a regression model is the estimation of the QTL number and respective interactions. Among the many model selection criteria that can be used to estimate the number of regressor variables, none are used to estimate the number of interactions. Our simulations demonstrate that epistatic terms appearing in a model without the related main effects cause the standard model selection criteria to have a strong tendency to overestimate the number of interactions, and so the QTL number. With this as our motivation we investigate the behavior of the Schwarz Bayesian information criterion (BIC) by explaining the phenomenon of the overestimation and proposing a novel modification of BIC that allows the detection of main effects and pairwise interactions in a backcross population. Results of an extensive simulation study demonstrate that our modified version of BIC performs very well in practice. Our methodology can be extended to general populations and higher-order interactions.
Full Text
The Full Text of this article is available as a PDF (111.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ball R. D. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion. Genetics. 2001 Nov;159(3):1351–1364. doi: 10.1093/genetics/159.3.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boer Martin P., Ter Braak Cajo J. F., Jansen Ritsert C. A penalized likelihood method for mapping epistatic quantitative trait Loci with one-dimensional genome searches. Genetics. 2002 Oct;162(2):951–960. doi: 10.1093/genetics/162.2.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlborg O., Andersson L., Kinghorn B. The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics. 2000 Aug;155(4):2003–2010. doi: 10.1093/genetics/155.4.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fijneman R. J., Jansen R. C., van der Valk M. A., Demant P. High frequency of interactions between lung cancer susceptibility genes in the mouse: mapping of Sluc5 to Sluc14. Cancer Res. 1998 Nov 1;58(21):4794–4798. [PubMed] [Google Scholar]
- Fijneman R. J., de Vries S. S., Jansen R. C., Demant P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat Genet. 1996 Dec;14(4):465–467. doi: 10.1038/ng1296-465. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Heath S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 1997 Sep;61(3):748–760. doi: 10.1086/515506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jannink J. L., Jansen R. Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics. 2001 Jan;157(1):445–454. doi: 10.1093/genetics/157.1.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilpikari Riika, Sillanpä Mikko J. Bayesian analysis of multilocus association in quantitative and qualitative traits. Genet Epidemiol. 2003 Sep;25(2):122–135. doi: 10.1002/gepi.10257. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamichi R., Ukai Y., Kishino H. Detection of closely linked multiple quantitative trait loci using a genetic algorithm. Genetics. 2001 May;158(1):463–475. doi: 10.1093/genetics/158.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piepho H. P., Gauch H. G., Jr Marker pair selection for mapping quantitative trait loci. Genetics. 2001 Jan;157(1):433–444. doi: 10.1093/genetics/157.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen S., Churchill G. A. A statistical framework for quantitative trait mapping. Genetics. 2001 Sep;159(1):371–387. doi: 10.1093/genetics/159.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sillanpä Mikko J., Corander Jukka. Model choice in gene mapping: what and why. Trends Genet. 2002 Jun;18(6):301–307. doi: 10.1016/S0168-9525(02)02688-4. [DOI] [PubMed] [Google Scholar]
- Uimari P., Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics. 1997 Jun;146(2):735–743. doi: 10.1093/genetics/146.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Shizhong. Estimating polygenic effects using markers of the entire genome. Genetics. 2003 Feb;163(2):789–801. doi: 10.1093/genetics/163.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi N., Xu S. Bayesian mapping of quantitative trait loci for complex binary traits. Genetics. 2000 Jul;155(3):1391–1403. doi: 10.1093/genetics/155.3.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi Nengjun, George Varghese, Allison David B. Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics. 2003 Jul;164(3):1129–1138. doi: 10.1093/genetics/164.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi Nengjun, Xu Shizhong, Allison David B. Bayesian model choice and search strategies for mapping interacting quantitative trait Loci. Genetics. 2003 Oct;165(2):867–883. doi: 10.1093/genetics/165.2.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi Nengjun, Xu Shizhong. Mapping quantitative trait loci with epistatic effects. Genet Res. 2002 Apr;79(2):185–198. doi: 10.1017/s0016672301005511. [DOI] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]