Phosphoesterase domains associated with DNA polymerases of diverse origins (original) (raw)
Abstract
Computer analysis of DNA polymerase protein sequences revealed previously unidentified conserved domains that belong to two distinct superfamilies of phosphoesterases. The alpha subunits of bacterial DNA polymerase III and two distinct family X DNA polymerases are shown to contain an N-terminal domain that defines a novel enzymatic superfamily, designated PHP, after polymerase and histidinol phosphatase. The predicted catalytic site of the PHP superfamily consists of four motifs containing conserved histidine residues that are likely to be involved in metal-dependent catalysis of phosphoester bond hydrolysis. The PHP domain is highly conserved in all bacterial polymerase III alpha subunits, but in proteobacteria and mycoplasmas, the conserved motifs are distorted, suggesting a loss of the enzymatic activity. Another conserved domain, found in the small subunits of archaeal DNA polymerase II and eukaryotic DNA polymerases alpha and delta, is shown to belong to the superfamily of calcineurin-like phospho-esterases, which unites a variety of phosphatases and nucleases. The conserved motifs required for phospho-esterase activity are intact in the archaeal DNA polymerase subunits, but are disrupted in their eukaryotic orthologs. A hypothesis is proposed that bacterial and archaeal replicative DNA polymerases possess intrinsic phosphatase activity that hydrolyzes the pyrophosphate released during nucleotide polymerization. As proposed previously, pyrophosphate hydrolysis may be necessary to drive the polymerization reaction forward. The phosphoesterase domains with disrupted catalytic motifs may assume an allosteric, regulatory function and/or bind other subunits of DNA polymerase holoenzymes. In these cases, the pyrophosphate may be hydrolyzed by a stand-alone phosphatase, and candidates for such a role were identified among bacterial PHP superfamily members.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aravind L., Koonin E. V. A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci. 1998 Jan;23(1):17–19. doi: 10.1016/s0968-0004(97)01162-6. [DOI] [PubMed] [Google Scholar]
- Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. R., Doolittle W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev. 1997 Dec;61(4):456–502. doi: 10.1128/mmbr.61.4.456-502.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delorme C., Ehrlich S. D., Renault P. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol. 1992 Oct;174(20):6571–6579. doi: 10.1128/jb.174.20.6571-6579.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doherty A. J., Serpell L. C., Ponting C. P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 1996 Jul 1;24(13):2488–2497. doi: 10.1093/nar/24.13.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg J., Huang H. B., Kwon Y. G., Greengard P., Nairn A. C., Kuriyan J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature. 1995 Aug 31;376(6543):745–753. doi: 10.1038/376745a0. [DOI] [PubMed] [Google Scholar]
- Hashimoto K., Nakashima N., Ohara T., Maki S., Sugino A. The second subunit of DNA polymerase III (delta) is encoded by the HYS2 gene in Saccharomyces cerevisiae. Nucleic Acids Res. 1998 Jan 15;26(2):477–485. doi: 10.1093/nar/26.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hindges R., Hübscher U. DNA polymerase delta, an essential enzyme for DNA transactions. Biol Chem. 1997 May;378(5):345–362. doi: 10.1515/bchm.1997.378.5.345. [DOI] [PubMed] [Google Scholar]
- Holm L., Sander C. An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins. 1997 May;28(1):72–82. [PubMed] [Google Scholar]
- Holm L., Sander C. DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci. 1995 Sep;20(9):345–347. doi: 10.1016/s0968-0004(00)89071-4. [DOI] [PubMed] [Google Scholar]
- Ishino Y., Komori K., Cann I. K., Koga Y. A novel DNA polymerase family found in Archaea. J Bacteriol. 1998 Apr;180(8):2232–2236. doi: 10.1128/jb.180.8.2232-2236.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim D. R., Pritchard A. E., McHenry C. S. Localization of the active site of the alpha subunit of the Escherichia coli DNA polymerase III holoenzyme. J Bacteriol. 1997 Nov;179(21):6721–6728. doi: 10.1128/jb.179.21.6721-6728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koonin E. V. Conserved sequence pattern in a wide variety of phosphoesterases. Protein Sci. 1994 Feb;3(2):356–358. doi: 10.1002/pro.5560030218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koonin E. V., Tatusov R. L., Rudd K. E. Protein sequence comparison at genome scale. Methods Enzymol. 1996;266:295–322. doi: 10.1016/s0076-6879(96)66020-0. [DOI] [PubMed] [Google Scholar]
- Li Y., Asahara H., Patel V. S., Zhou S., Linn S. Purification, cDNA cloning, and gene mapping of the small subunit of human DNA polymerase epsilon. J Biol Chem. 1997 Dec 19;272(51):32337–32344. doi: 10.1074/jbc.272.51.32337. [DOI] [PubMed] [Google Scholar]
- Malone R. E., Kim S., Bullard S. A., Lundquist S., Hutchings-Crow L., Cramton S., Lutfiyya L., Lee J. Analysis of a recombination hotspot for gene conversion occurring at the HIS2 gene of Saccharomyces cerevisiae. Genetics. 1994 May;137(1):5–18. doi: 10.1093/genetics/137.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mushegian A. R., Koonin E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10268–10273. doi: 10.1073/pnas.93.19.10268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuwald A. F., Liu J. S., Lawrence C. E. Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci. 1995 Aug;4(8):1618–1632. doi: 10.1002/pro.5560040820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts I. S. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol. 1996;50:285–315. doi: 10.1146/annurev.micro.50.1.285. [DOI] [PubMed] [Google Scholar]
- Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
- Rost B., Schneider R., Sander C. Protein fold recognition by prediction-based threading. J Mol Biol. 1997 Jul 18;270(3):471–480. doi: 10.1006/jmbi.1997.1101. [DOI] [PubMed] [Google Scholar]
- Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
- Sharples G. J., Leach D. R. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol Microbiol. 1995 Sep;17(6):1215–1217. doi: 10.1111/j.1365-2958.1995.mmi_17061215_1.x. [DOI] [PubMed] [Google Scholar]
- Sträter N., Klabunde T., Tucker P., Witzel H., Krebs B. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science. 1995 Jun 9;268(5216):1489–1492. doi: 10.1126/science.7770774. [DOI] [PubMed] [Google Scholar]
- Tatusov R. L., Altschul S. F., Koonin E. V. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12091–12095. doi: 10.1073/pnas.91.25.12091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uemori T., Sato Y., Kato I., Doi H., Ishino Y. A novel DNA polymerase in the hyperthermophilic archaeon, Pyrococcus furiosus: gene cloning, expression, and characterization. Genes Cells. 1997 Aug;2(8):499–512. doi: 10.1046/j.1365-2443.1997.1380336.x. [DOI] [PubMed] [Google Scholar]
- Wootton J. C., Federhen S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 1996;266:554–571. doi: 10.1016/s0076-6879(96)66035-2. [DOI] [PubMed] [Google Scholar]
- Yue D., Maizels N., Weiner A. M. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA. 1996 Sep;2(9):895–908. [PMC free article] [PubMed] [Google Scholar]
- Zhou J. Q., He H., Tan C. K., Downey K. M., So A. G. The small subunit is required for functional interaction of DNA polymerase delta with the proliferating cell nuclear antigen. Nucleic Acids Res. 1997 Mar 15;25(6):1094–1099. doi: 10.1093/nar/25.6.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuo S., Gibbs E., Kelman Z., Wang T. S., O'Donnell M., MacNeill S. A., Hurwitz J. DNA polymerase delta isolated from Schizosaccharomyces pombe contains five subunits. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11244–11249. doi: 10.1073/pnas.94.21.11244. [DOI] [PMC free article] [PubMed] [Google Scholar]