Progressive increase of CD7- T cells in human blood lymphocytes with ageing (original) (raw)

Abstract

CD7 is one of the major surface antigens expressed very early during T cell ontogeny. Lack of CD7 expression on mature T cells is regarded as a classical feature of malignant T cells in certain forms of cutaneous T cell lymphoma. Previously, we identified a CD7- subset of peripheral blood T lymphocytes in normal human individuals. In this study we determined the portion of CD7- T cells in the peripheral blood of healthy volunteers ranging in age from 8 months to 90 years (n = 85) and in cord blood of full-term infants (n = 14). Furthermore, this CD7- subset was characterized in detail by the use of MoAbs and three-colour flow cytometry. In cord blood no CD7- T cells could be detected. After birth, percentage and absolute number of CD7- T cells increased with age. Independently of age, most CD7-CD3+ cells belonged to the CD4+ subpopulation. Focusing on the latter we could demonstrate the predominance of the CD45RO+CD45RA- phenotype in the CD7- subset. Furthermore, CD7- T cells contained a higher number of cells expressing activation markers and the CD57 antigen, but a reduced number of CD62L+ cells in comparison with CD7+ T cells.

163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Bell E. B. Function of CD4 T cell subsets in vivo: expression of CD45R isoforms. Semin Immunol. 1992 Feb;4(1):43–50. [PubMed] [Google Scholar]
  3. Beverley P. C. Functional analysis of human T cell subsets defined by CD45 isoform expression. Semin Immunol. 1992 Feb;4(1):35–41. [PubMed] [Google Scholar]
  4. Carrera A. C., Rincón M., Sánchez-Madrid F., López-Botet M., de Landaźuri M. O. Triggering of co-mitogenic signals in T cell proliferation by anti-LFA-1 (CD18, CD11a), LFA-3, and CD7 monoclonal antibodies. J Immunol. 1988 Sep 15;141(6):1919–1924. [PubMed] [Google Scholar]
  5. Damle N. K., Doyle L. V. Ability of human T lymphocytes to adhere to vascular endothelial cells and to augment endothelial permeability to macromolecules is linked to their state of post-thymic maturation. J Immunol. 1990 Feb 15;144(4):1233–1240. [PubMed] [Google Scholar]
  6. Haynes B. F., Mann D. L., Hemler M. E., Schroer J. A., Shelhamer J. H., Eisenbarth G. S., Strominger J. L., Thomas C. A., Mostowski H. S., Fauci A. S. Characterization of a monoclonal antibody that defines an immunoregulatory T cell subset for immunoglobulin synthesis in humans. Proc Natl Acad Sci U S A. 1980 May;77(5):2914–2918. doi: 10.1073/pnas.77.5.2914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haynes B. F., Metzgar R. S., Minna J. D., Bunn P. A. Phenotypic characterization of cutaneous T-cell lymphoma. Use of monoclonal antibodies to compare with other malignant T cells. N Engl J Med. 1981 May 28;304(22):1319–1323. doi: 10.1056/NEJM198105283042202. [DOI] [PubMed] [Google Scholar]
  8. Jackson A. L., Matsumoto H., Janszen M., Maino V., Blidy A., Shye S. Restricted expression of p55 interleukin 2 receptor (CD25) on normal T cells. Clin Immunol Immunopathol. 1990 Jan;54(1):126–133. doi: 10.1016/0090-1229(90)90012-f. [DOI] [PubMed] [Google Scholar]
  9. Link M., Warnke R., Finlay J., Amylon M., Miller R., Dilley J., Levy R. A single monoclonal antibody identifies T-cell lineage of childhood lymphoid malignancies. Blood. 1983 Oct;62(4):722–728. [PubMed] [Google Scholar]
  10. Lobach D. F., Hensley L. L., Ho W., Haynes B. F. Human T cell antigen expression during the early stages of fetal thymic maturation. J Immunol. 1985 Sep;135(3):1752–1759. [PubMed] [Google Scholar]
  11. Merkenschlager M., Terry L., Edwards R., Beverley P. C. Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol. 1988 Nov;18(11):1653–1661. doi: 10.1002/eji.1830181102. [DOI] [PubMed] [Google Scholar]
  12. Moll M., Reinhold U., Kukel S., Abken H., Müller R., Oltermann I., Kreysel H. W. CD7-negative helper T cells accumulate in inflammatory skin lesions. J Invest Dermatol. 1994 Mar;102(3):328–332. doi: 10.1111/1523-1747.ep12371791. [DOI] [PubMed] [Google Scholar]
  13. Pietschmann P., Cush J. J., Lipsky P. E., Oppenheimer-Marks N. Identification of subsets of human T cells capable of enhanced transendothelial migration. J Immunol. 1992 Aug 15;149(4):1170–1178. [PubMed] [Google Scholar]
  14. Pitzalis C., Kingsley G., Haskard D., Panayi G. The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol. 1988 Sep;18(9):1397–1404. doi: 10.1002/eji.1830180915. [DOI] [PubMed] [Google Scholar]
  15. Reinhold U., Abken H., Kukel S., Moll M., Müller R., Oltermann I., Kreysel H. W. CD7- T cells represent a subset of normal human blood lymphocytes. J Immunol. 1993 Mar 1;150(5):2081–2089. [PubMed] [Google Scholar]
  16. Rudd C. E., Morimoto C., Wong L. L., Schlossman S. F. The subdivision of the T4 (CD4) subset on the basis of the differential expression of L-C/T200 antigens. J Exp Med. 1987 Dec 1;166(6):1758–1773. doi: 10.1084/jem.166.6.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  18. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  19. Serra H. M., Krowka J. F., Ledbetter J. A., Pilarski L. M. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event. J Immunol. 1988 Mar 1;140(5):1435–1441. [PubMed] [Google Scholar]
  20. Sterry W., Bruhn S., Künne N., Lichtenberg B., Weber-Matthiesen K., Brasch J., Mielke V. Dominance of memory over naive T cells in contact dermatitis is due to differential tissue immigration. Br J Dermatol. 1990 Jul;123(1):59–64. doi: 10.1111/j.1365-2133.1990.tb01824.x. [DOI] [PubMed] [Google Scholar]
  21. Wallace D. L., Beverley P. C. Phenotypic changes associated with activation of CD45RA+ and CD45RO+ T cells. Immunology. 1990 Mar;69(3):460–467. [PMC free article] [PubMed] [Google Scholar]
  22. Ware R. E., Scearce R. M., Dietz M. A., Starmer C. F., Palker T. J., Haynes B. F. Characterization of the surface topography and putative tertiary structure of the human CD7 molecule. J Immunol. 1989 Dec 1;143(11):3632–3640. [PubMed] [Google Scholar]
  23. Yamashita N., Clement L. T. Phenotypic characterization of the post-thymic differentiation of human alloantigen-specific CD8+ cytotoxic T lymphocytes. J Immunol. 1989 Sep 1;143(5):1518–1523. [PubMed] [Google Scholar]
  24. Zola H., Flego L., Macardle P. J., Donohoe P. J., Ranford J., Roberton D. The CD45RO (p180, UCHL1) marker: complexity of expression in peripheral blood. Cell Immunol. 1992 Nov;145(1):175–186. doi: 10.1016/0008-8749(92)90321-f. [DOI] [PubMed] [Google Scholar]