Evaluating the effects of endocrine disruptors on endocrine function during development (original) (raw)
Abstract
The major concerns with endocrine disruptors in the environment are based mostly on effects that have been observed on the developing embryo and fetus. The focus of the present manuscript is on disruption of three hormonal systems: estrogens, androgens, and thyroid hormones. These three hormonal systems have been well characterized with regard to their roles in normal development, and their actions during development are known to be perturbed by endocrine-disrupting chemicals. During development, organs are especially sensitive to low concentrations of the sex steroids and thyroid hormones. Changes induced by exposure to these hormones during development are often irreversible, in contrast with the reversible changes induced by transient hormone exposure in the adult. Although it is known that there are differences in embryonic/fetal/neonatal versus adult endocrine responses, minimal experimental information is available to aid in characterizing the risk of endocrine disruptors with regard to a number of issues. Issues discussed here include the hypothesis of greater sensitivity of embryos/fetuses to endocrine disruptors, irreversible consequences of exposure before maturation of homeostatic systems and during periods of genetic imprinting, and quantitative information related to the shape of the dose-response curve for specific developmental phenomena.

Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
- Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):59–84. doi: 10.1177/074823379801400107. [DOI] [PubMed] [Google Scholar]
- Colborn T., Smolen M. J., Rolland R. Environmental neurotoxic effects: the search for new protocols in functional teratology. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):9–23. doi: 10.1177/074823379801400104. [DOI] [PubMed] [Google Scholar]
- Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke P. S., Young P., Cunha G. R. Androgen receptor expression in developing male reproductive organs. Endocrinology. 1991 Jun;128(6):2867–2873. doi: 10.1210/endo-128-6-2867. [DOI] [PubMed] [Google Scholar]
- Cooke P. S., Young P., Hess R. A., Cunha G. R. Estrogen receptor expression in developing epididymis, efferent ductules, and other male reproductive organs. Endocrinology. 1991 Jun;128(6):2874–2879. doi: 10.1210/endo-128-6-2874. [DOI] [PubMed] [Google Scholar]
- DICZFALUSY E. ENDOCRINE FUNCTIONS OF THE HUMAN FETOPLACENTAL UNIT. Fed Proc. 1964 Jul-Aug;23:791–798. [PubMed] [Google Scholar]
- Danzo B. J., Eller B. C. The ontogeny of biologically active androgen-binding protein in rat plasma, testis, and epididymis. Endocrinology. 1985 Oct;117(4):1380–1388. doi: 10.1210/endo-117-4-1380. [DOI] [PubMed] [Google Scholar]
- Divi R. L., Chang H. C., Doerge D. R. Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol. 1997 Nov 15;54(10):1087–1096. doi: 10.1016/s0006-2952(97)00301-8. [DOI] [PubMed] [Google Scholar]
- Fox T. O. Androgen- and estrogen-binding macromolecules in developing mouse brain: biochemical and genetic evidence. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4303–4307. doi: 10.1073/pnas.72.11.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert S. F., Opitz J. M., Raff R. A. Resynthesizing evolutionary and developmental biology. Dev Biol. 1996 Feb 1;173(2):357–372. doi: 10.1006/dbio.1996.0032. [DOI] [PubMed] [Google Scholar]
- Gray L. E., Jr, Ostby J., Cooper R. L., Kelce W. R. The estrogenic and antiandrogenic pesticide methoxychlor alters the reproductive tract and behavior without affecting pituitary size or LH and prolactin secretion in male rats. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):37–47. doi: 10.1177/074823379901500105. [DOI] [PubMed] [Google Scholar]
- Greco T. L., Duello T. M., Gorski J. Estrogen receptors, estradiol, and diethylstilbestrol in early development: the mouse as a model for the study of estrogen receptors and estrogen sensitivity in embryonic development of male and female reproductive tracts. Endocr Rev. 1993 Feb;14(1):59–71. doi: 10.1210/edrv-14-1-59. [DOI] [PubMed] [Google Scholar]
- Hajek R. A., Robertson A. D., Johnston D. A., Van N. T., Tcholakian R. K., Wagner L. A., Conti C. J., Meistrich M. L., Contreras N., Edwards C. L. During development, 17alpha-estradiol is a potent estrogen and carcinogen. Environ Health Perspect. 1997 Apr;105 (Suppl 3):577–581. doi: 10.1289/ehp.97105s3577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson J. L., Jacobson S. W. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med. 1996 Sep 12;335(11):783–789. doi: 10.1056/NEJM199609123351104. [DOI] [PubMed] [Google Scholar]
- Kelce W. R., Monosson E., Gamcsik M. P., Laws S. C., Gray L. E., Jr Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol. 1994 Jun;126(2):276–285. doi: 10.1006/taap.1994.1117. [DOI] [PubMed] [Google Scholar]
- Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
- McLachlan J. A., Newbold R. R. Estrogens and development. Environ Health Perspect. 1987 Nov;75:25–27. doi: 10.1289/ehp.877525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montano M. M., Welshons W. V., vom Saal F. S. Free estradiol in serum and brain uptake of estradiol during fetal and neonatal sexual differentiation in female rats. Biol Reprod. 1995 Nov;53(5):1198–1207. doi: 10.1095/biolreprod53.5.1198. [DOI] [PubMed] [Google Scholar]
- Morrissey R. E., Lamb J. C., 4th, Morris R. W., Chapin R. E., Gulati D. K., Heindel J. J. Results and evaluations of 48 continuous breeding reproduction studies conducted in mice. Fundam Appl Toxicol. 1989 Nov;13(4):747–777. doi: 10.1016/0272-0590(89)90332-1. [DOI] [PubMed] [Google Scholar]
- Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagel S. C., vom Saal F. S., Welshons W. V. The effective free fraction of estradiol and xenoestrogens in human serum measured by whole cell uptake assays: physiology of delivery modifies estrogenic activity. Proc Soc Exp Biol Med. 1998 Mar;217(3):300–309. doi: 10.3181/00379727-217-44236. [DOI] [PubMed] [Google Scholar]
- Newbold R. R., Hanson R. B., Jefferson W. N., Bullock B. C., Haseman J., McLachlan J. A. Increased tumors but uncompromised fertility in the female descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis. 1998 Sep;19(9):1655–1663. doi: 10.1093/carcin/19.9.1655. [DOI] [PubMed] [Google Scholar]
- Newbold R. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens. Environ Health Perspect. 1995 Oct;103 (Suppl 7):83–87. doi: 10.1289/ehp.95103s783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharpe R. M., Fisher J. S., Millar M. M., Jobling S., Sumpter J. P. Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect. 1995 Dec;103(12):1136–1143. doi: 10.1289/ehp.951031136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheehan D. M., Willingham E., Gaylor D., Bergeron J. M., Crews D. No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect. 1999 Feb;107(2):155–159. doi: 10.1289/ehp.99107155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siiteri P. K., Murai J. T., Hammond G. L., Nisker J. A., Raymoure W. J., Kuhn R. W. The serum transport of steroid hormones. Recent Prog Horm Res. 1982;38:457–510. doi: 10.1016/b978-0-12-571138-8.50016-0. [DOI] [PubMed] [Google Scholar]
- Soto A. M., Fernandez M. F., Luizzi M. F., Oles Karasko A. S., Sonnenschein C. Developing a marker of exposure to xenoestrogen mixtures in human serum. Environ Health Perspect. 1997 Apr;105 (Suppl 3):647–654. doi: 10.1289/ehp.97105s3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmetz R., Brown N. G., Allen D. L., Bigsby R. M., Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology. 1997 May;138(5):1780–1786. doi: 10.1210/endo.138.5.5132. [DOI] [PubMed] [Google Scholar]
- Taguchi O., Cunha G. R., Robboy S. J. Experimental study of the effect of diethylstilbestrol on the development of the human female reproductive tract. Biol Res Pregnancy Perinatol. 1983;4(2):56–70. [PubMed] [Google Scholar]
- Taylor H. S., Vanden Heuvel G. B., Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997 Dec;57(6):1338–1345. doi: 10.1095/biolreprod57.6.1338. [DOI] [PubMed] [Google Scholar]
- Waller C. L., Juma B. W., Gray L. E., Jr, Kelce W. R. Three-dimensional quantitative structure--activity relationships for androgen receptor ligands. Toxicol Appl Pharmacol. 1996 Apr;137(2):219–227. doi: 10.1006/taap.1996.0075. [DOI] [PubMed] [Google Scholar]
- Welshons W. V., Nagel S. C., Thayer K. A., Judy B. M., Vom Saal F. S. Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):12–25. doi: 10.1177/074823379901500103. [DOI] [PubMed] [Google Scholar]
- Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]
- Wong C., Kelce W. R., Sar M., Wilson E. M. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem. 1995 Aug 25;270(34):19998–20003. doi: 10.1074/jbc.270.34.19998. [DOI] [PubMed] [Google Scholar]
- vom Saal F. S., Cooke P. S., Buchanan D. L., Palanza P., Thayer K. A., Nagel S. C., Parmigiani S., Welshons W. V. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):239–260. doi: 10.1177/074823379801400115. [DOI] [PubMed] [Google Scholar]
- vom Saal F. S. Sexual differentiation in litter-bearing mammals: influence of sex of adjacent fetuses in utero. J Anim Sci. 1989 Jul;67(7):1824–1840. doi: 10.2527/jas1989.6771824x. [DOI] [PubMed] [Google Scholar]
- vom Saal F. S., Timms B. G., Montano M. M., Palanza P., Thayer K. A., Nagel S. C., Dhar M. D., Ganjam V. K., Parmigiani S., Welshons W. V. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2056–2061. doi: 10.1073/pnas.94.5.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]