Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation (original) (raw)

Abstract

Several fast-growing Mycobacterium strains were found to inactivate rifampin. Two inactivated compounds (RIP-Ma and RIP-Mb) produced by these organisms were different from previously reported derivatives, i.e., phosphorylated or glucosylated derivatives, of the antibiotic. The structures of RIP-Ma and RIP-Mb were determined to be those of 3-formyl-23-[O-(alpha-D-ribofuranosyl)]rifamycin SV and 23-[O-(alpha-D-ribofuranosyl)]rifampin, respectively. To our knowledge, this is the first known example of ribosylation as a mechanism of antibiotic inactivation.

Full Text

The Full Text of this article is available as a PDF (181.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen S. J., Dabbs E. R. Cloning of nocardioform DNA conferring the ability to inactivate rifampicin. FEMS Microbiol Lett. 1991 Apr 15;63(2-3):247–250. doi: 10.1016/0378-1097(91)90093-p. [DOI] [PubMed] [Google Scholar]
  2. Arora S. K., Arjunan P. Molecular structure and conformation of rifamycin S, a potent inhibitor of DNA-dependent RNA polymerase. J Antibiot (Tokyo) 1992 Mar;45(3):428–431. doi: 10.7164/antibiotics.45.428. [DOI] [PubMed] [Google Scholar]
  3. Cavalleri B., Turconi M., Tamborini G., Occelli E., Cietto G., Pallanza R., Scotti R., Berti M., Romanó G., Parenti F. Synthesis and biological activity of some derivatives of rifamycin P. J Med Chem. 1990 May;33(5):1470–1476. doi: 10.1021/jm00167a029. [DOI] [PubMed] [Google Scholar]
  4. Cundliffe E. Glycosylation of macrolide antibiotics in extracts of Streptomyces lividans. Antimicrob Agents Chemother. 1992 Feb;36(2):348–352. doi: 10.1128/aac.36.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Honore N., Cole S. T. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother. 1993 Mar;37(3):414–418. doi: 10.1128/aac.37.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hunt J. M., Roberts G. D., Stockman L., Felmlee T. A., Persing D. H. Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens. Diagn Microbiol Infect Dis. 1994 Apr;18(4):219–227. doi: 10.1016/0732-8893(94)90024-8. [DOI] [PubMed] [Google Scholar]
  7. Jenkins G., Cundliffe E. Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene. 1991 Dec 1;108(1):55–62. doi: 10.1016/0378-1119(91)90487-v. [DOI] [PubMed] [Google Scholar]
  8. Kuo M. S., Chirby D. G., Argoudelis A. D., Cialdella J. I., Coats J. H., Marshall V. P. Microbial glycosylation of erythromycin A. Antimicrob Agents Chemother. 1989 Dec;33(12):2089–2091. doi: 10.1128/aac.33.12.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morisaki N., Iwasaki S., Yazawa K., Mikami Y., Maeda A. Inactivated products of rifampicin by pathogenic Nocardia spp.: structures of glycosylated and phosphorylated metabolites of rifampicin and 3-formylrifamycin SV. J Antibiot (Tokyo) 1993 Oct;46(10):1605–1610. doi: 10.7164/antibiotics.46.1605. [DOI] [PubMed] [Google Scholar]
  10. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  11. Vilches C., Hernandez C., Mendez C., Salas J. A. Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus. J Bacteriol. 1992 Jan;174(1):161–165. doi: 10.1128/jb.174.1.161-165.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Williams D. L., Waguespack C., Eisenach K., Crawford J. T., Portaels F., Salfinger M., Nolan C. M., Abe C., Sticht-Groh V., Gillis T. P. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994 Oct;38(10):2380–2386. doi: 10.1128/aac.38.10.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yazawa K., Mikami Y., Maeda A., Akao M., Morisaki N., Iwasaki S. Inactivation of rifampin by Nocardia brasiliensis. Antimicrob Agents Chemother. 1993 Jun;37(6):1313–1317. doi: 10.1128/aac.37.6.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yazawa K., Mikami Y., Sakamoto T., Ueno Y., Morisaki N., Iwasaki S., Furihata K. Inactivation of the macrolide antibiotics erythromycin, midecamycin, and rokitamycin by pathogenic Nocardia species. Antimicrob Agents Chemother. 1994 Sep;38(9):2197–2199. doi: 10.1128/aac.38.9.2197. [DOI] [PMC free article] [PubMed] [Google Scholar]