A novel gentamicin resistance gene in Enterococcus (original) (raw)

Abstract

Enterococcus gallinarum SF9117 is a veterinary isolate for which the MIC of gentamicin is 256 micrograms/ml. Time-kill studies with a combination of ampicillin plus gentamicin failed to show synergism against SF9117. A probe representing aac(6')-aph(2") did not hybridize to DNA from SF9117. A 3.2-kb fragment from plasmid pYN134 of SF9117 was cloned and conferred resistance to gentamicin in Escherichia coli DH5 alpha. Nucleotide sequence analysis revealed the presence of a 918-bp open reading frame whose deduced amino acid sequence had a region with homology to the C-terminal domain of the bifunctional enzyme AAC(6')-APH(2"). The gene is designated aph(2")-Ic, and its observed phosphotransferase activity is provisionally designated APH(2")-Ic. An intragenic probe hybridized to the genomic DNA from an Enterococcus faecium isolate from the peritoneal fluid of one patient and to the plasmid DNA of an Enterococcus faecalis isolate from the blood of another patient. An enterococcal isolate containing this novel resistance gene might not be readily detected in clinical laboratories that use gentamicin at 500 or 2,000 micrograms/ml for screening for high-level resistance.

Full Text

The Full Text of this article is available as a PDF (106.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bibb M. J., Bibb M. J., Ward J. M., Cohen S. N. Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Mol Gen Genet. 1985;199(1):26–36. doi: 10.1007/BF00327505. [DOI] [PubMed] [Google Scholar]
  3. Clewell D. B., Tomich P. K., Gawron-Burke M. C., Franke A. E., Yagi Y., An F. Y. Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. J Bacteriol. 1982 Dec;152(3):1220–1230. doi: 10.1128/jb.152.3.1220-1230.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clewell D. B., Yagi Y., Dunny G. M., Schultz S. K. Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J Bacteriol. 1974 Jan;117(1):283–289. doi: 10.1128/jb.117.1.283-289.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coque T. M., Arduino R. C., Murray B. E. High-level resistance to aminoglycosides: comparison of community and nosocomial fecal isolates of enterococci. Clin Infect Dis. 1995 Apr;20(4):1048–1051. doi: 10.1093/clinids/20.4.1048. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donabedian S. M., Chow J. W., Boyce J. M., McCabe R. E., Markowitz S. M., Coudron P. E., Kuritza A., Pierson C. L., Zervos M. J. Molecular typing of ampicillin-resistant, non-beta-lactamase-producing Enterococcus faecium isolates from diverse geographic areas. J Clin Microbiol. 1992 Nov;30(11):2757–2761. doi: 10.1128/jcm.30.11.2757-2761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donabedian S., Chow J. W., Shlaes D. M., Green M., Zervos M. J. DNA hybridization and contour-clamped homogeneous electric field electrophoresis for identification of enterococci to the species level. J Clin Microbiol. 1995 Jan;33(1):141–145. doi: 10.1128/jcm.33.1.141-145.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eliopoulos G. M., Wennersten C., Zighelboim-Daum S., Reiszner E., Goldmann D., Moellering R. C., Jr High-level resistance to gentamicin in clinical isolates of Streptococcus (Enterococcus) faecium. Antimicrob Agents Chemother. 1988 Oct;32(10):1528–1532. doi: 10.1128/aac.32.10.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferretti J. J., Gilmore K. S., Courvalin P. Nucleotide sequence analysis of the gene specifying the bifunctional 6'-aminoglycoside acetyltransferase 2"-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol. 1986 Aug;167(2):631–638. doi: 10.1128/jb.167.2.631-638.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gordon S., Swenson J. M., Hill B. C., Pigott N. E., Facklam R. R., Cooksey R. C., Thornsberry C., Jarvis W. R., Tenover F. C. Antimicrobial susceptibility patterns of common and unusual species of enterococci causing infections in the United States. Enterococcal Study Group. J Clin Microbiol. 1992 Sep;30(9):2373–2378. doi: 10.1128/jcm.30.9.2373-2378.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaworski D. D., Clewell D. B. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J Bacteriol. 1995 Nov;177(22):6644–6651. doi: 10.1128/jb.177.22.6644-6651.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Perlin M. H., Lerner S. A. Amikacin resistance associated with a plasmid-borne aminoglycoside phosphotransferase in Escherichia coli. Antimicrob Agents Chemother. 1979 Nov;16(5):598–604. doi: 10.1128/aac.16.5.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Perri M. B., Chow J. W., Zervos M. J. In vitro activity of sparfloxacin and clinafloxacin against multidrug-resistant enterococci. Diagn Microbiol Infect Dis. 1993 Aug-Sep;17(2):151–155. doi: 10.1016/0732-8893(93)90026-4. [DOI] [PubMed] [Google Scholar]
  15. Sexton D. J., Harrell L. J., Thorpe J. J., Hunt D. L., Reller L. B. A case-control study of nosocomial ampicillin-resistant enterococcal infection and colonization at a university hospital. Infect Control Hosp Epidemiol. 1993 Nov;14(11):629–635. doi: 10.1086/646655. [DOI] [PubMed] [Google Scholar]
  16. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993 Mar;57(1):138–163. doi: 10.1128/mr.57.1.138-163.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Su Y. A., Clewell D. B. Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid. 1993 Nov;30(3):234–250. doi: 10.1006/plas.1993.1055. [DOI] [PubMed] [Google Scholar]
  18. Thal L. A., Chow J. W., Clewell D. B., Zervos M. J. Tn924, a chromosome-borne transposon encoding high-level gentamicin resistance in Enterococcus faecalis. Antimicrob Agents Chemother. 1994 May;38(5):1152–1156. doi: 10.1128/aac.38.5.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thal L. A., Chow J. W., Patterson J. E., Perri M. B., Donabedian S., Clewell D. B., Zervos M. J. Molecular characterization of highly gentamicin-resistant Enterococcus faecalis isolates lacking high-level streptomycin resistance. Antimicrob Agents Chemother. 1993 Jan;37(1):134–137. doi: 10.1128/aac.37.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wirth R., An F. Y., Clewell D. B. Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector. J Bacteriol. 1986 Mar;165(3):831–836. doi: 10.1128/jb.165.3.831-836.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]