Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations (original) (raw)

Abstract

Background: Patients with chronic obstructive pulmonary disease (COPD) are prone to frequent exacerbations which are a significant cause of morbidity and mortality. Stable COPD patients often have lower airway bacterial colonisation which may be an important stimulus to airway inflammation and thereby modulate exacerbation frequency.

Methods: Twenty nine patients with COPD (21 men, 16 current smokers) of mean (SD) age 65.9 (7.84) years, forced expiratory volume in 1 second (FEV1) 1.06 (0.41) l, FEV1 % predicted 38.7 (15.2)%, FEV1/FVC 43.7 (14.1)%, inhaled steroid dosage 1.20 (0.66) mg/day completed daily diary cards for symptoms and peak flow over 18 months. Exacerbation frequency rates were determined from diary card data. Induced sputum was obtained from patients in the stable state, quantitative bacterial culture was performed, and cytokine levels were measured.

Results: Fifteen of the 29 patients (51.7%) were colonised by a possible pathogen: Haemophilus influenzae (53.3%), Streptococcus pneumoniae (33.3%), Haemophilus parainfluenzae (20%), Branhamella catarrhalis (20%), Pseudomonas aeruginosa (20%). The presence of lower airway bacterial colonisation in the stable state was related to exacerbation frequency (p=0.023). Patients colonised by H influenzae in the stable state reported more symptoms and increased sputum purulence at exacerbation than those not colonised. The median (IQR) symptom count at exacerbation in those colonised by H influenzae was 2.00 (2.00–2.65) compared with 2.00 (1.00–2.00) in those not colonised (p=0.03). The occurrence of increased sputum purulence at exacerbation per patient was 0.92 (0.56–1.00) in those colonised with H influenzae and 0.33 (0.00–0.60) in those not colonised (p=0.02). Sputum interleukin (IL)-8 levels correlated with the total bacterial count (rho=0.459, p=0.02).

Conclusion: Lower airway bacterial colonisation in the stable state modulates the character and frequency of COPD exacerbations.

Full Text

The Full Text of this article is available as a PDF (96.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler K. B., Hendley D. D., Davis G. S. Bacteria associated with obstructive pulmonary disease elaborate extracellular products that stimulate mucin secretion by explants of guinea pig airways. Am J Pathol. 1986 Dec;125(3):501–514. [PMC free article] [PubMed] [Google Scholar]
  2. Amitani R., Wilson R., Rutman A., Read R., Ward C., Burnett D., Stockley R. A., Cole P. J. Effects of human neutrophil elastase and Pseudomonas aeruginosa proteinases on human respiratory epithelium. Am J Respir Cell Mol Biol. 1991 Jan;4(1):26–32. doi: 10.1165/ajrcmb/4.1.26. [DOI] [PubMed] [Google Scholar]
  3. Bhowmik A., Seemungal T. A., Sapsford R. J., Devalia J. L., Wedzicha J. A. Comparison of spontaneous and induced sputum for investigation of airway inflammation in chronic obstructive pulmonary disease. Thorax. 1998 Nov;53(11):953–956. doi: 10.1136/thx.53.11.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhowmik A., Seemungal T. A., Sapsford R. J., Wedzicha J. A. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax. 2000 Feb;55(2):114–120. doi: 10.1136/thorax.55.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bresser P., Out T. A., van Alphen L., Jansen H. M., Lutter R. Airway inflammation in nonobstructive and obstructive chronic bronchitis with chronic haemophilus influenzae airway infection. Comparison with noninfected patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):947–952. doi: 10.1164/ajrccm.162.3.9908103. [DOI] [PubMed] [Google Scholar]
  6. Cabello H., Torres A., Celis R., El-Ebiary M., Puig de la Bellacasa J., Xaubet A., González J., Agustí C., Soler N. Bacterial colonization of distal airways in healthy subjects and chronic lung disease: a bronchoscopic study. Eur Respir J. 1997 May;10(5):1137–1144. doi: 10.1183/09031936.97.10051137. [DOI] [PubMed] [Google Scholar]
  7. Di Stefano A., Capelli A., Lusuardi M., Balbo P., Vecchio C., Maestrelli P., Mapp C. E., Fabbri L. M., Donner C. F., Saetta M. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med. 1998 Oct;158(4):1277–1285. doi: 10.1164/ajrccm.158.4.9802078. [DOI] [PubMed] [Google Scholar]
  8. Fainstein V., Musher D. M., Cate T. R. Bacterial adherence to pharyngeal cells during viral infection. J Infect Dis. 1980 Feb;141(2):172–176. doi: 10.1093/infdis/141.2.172. [DOI] [PubMed] [Google Scholar]
  9. Groeneveld K., van Alphen L., Eijk P. P., Jansen H. M., Zanen H. C. Changes in outer membrane proteins of nontypable Haemophilus influenzae in patients with chronic obstructive pulmonary disease. J Infect Dis. 1988 Aug;158(2):360–365. doi: 10.1093/infdis/158.2.360. [DOI] [PubMed] [Google Scholar]
  10. Groeneveld K., van Alphen L., Eijk P. P., Visschers G., Jansen H. M., Zanen H. C. Endogenous and exogenous reinfections by Haemophilus influenzae in patients with chronic obstructive pulmonary disease: the effect of antibiotic treatment on persistence. J Infect Dis. 1990 Mar;161(3):512–517. doi: 10.1093/infdis/161.3.512. [DOI] [PubMed] [Google Scholar]
  11. Gwaltney J. M., Jr, Sande M. A., Austrian R., Hendley J. O. Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S. pneumoniae to incidence of colds and serum antibody. J Infect Dis. 1975 Jul;132(1):62–68. doi: 10.1093/infdis/132.1.62. [DOI] [PubMed] [Google Scholar]
  12. Hiemstra P. S., van Wetering S., Stolk J. Neutrophil serine proteinases and defensins in chronic obstructive pulmonary disease: effects on pulmonary epithelium. Eur Respir J. 1998 Nov;12(5):1200–1208. doi: 10.1183/09031936.98.12051200. [DOI] [PubMed] [Google Scholar]
  13. Hill A. T., Campbell E. J., Hill S. L., Bayley D. L., Stockley R. A. Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med. 2000 Sep;109(4):288–295. doi: 10.1016/s0002-9343(00)00507-6. [DOI] [PubMed] [Google Scholar]
  14. Hunninghake G. W., Crystal R. G. Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis. 1983 Nov;128(5):833–838. doi: 10.1164/arrd.1983.128.5.833. [DOI] [PubMed] [Google Scholar]
  15. Khair O. A., Devalia J. L., Abdelaziz M. M., Sapsford R. J., Tarraf H., Davies R. J. Effect of Haemophilus influenzae endotoxin on the synthesis of IL-6, IL-8, TNF-alpha and expression of ICAM-1 in cultured human bronchial epithelial cells. Eur Respir J. 1994 Dec;7(12):2109–2116. doi: 10.1183/09031936.94.07122109. [DOI] [PubMed] [Google Scholar]
  16. Maestrelli P., Saetta M., Di Stefano A., Calcagni P. G., Turato G., Ruggieri M. P., Roggeri A., Mapp C. E., Fabbri L. M. Comparison of leukocyte counts in sputum, bronchial biopsies, and bronchoalveolar lavage. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1926–1931. doi: 10.1164/ajrccm.152.6.8520757. [DOI] [PubMed] [Google Scholar]
  17. Miravitlles M., Espinosa C., Fernández-Laso E., Martos J. A., Maldonado J. A., Gallego M. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Study Group of Bacterial Infection in COPD. Chest. 1999 Jul;116(1):40–46. doi: 10.1378/chest.116.1.40. [DOI] [PubMed] [Google Scholar]
  18. Monsó E., Rosell A., Bonet G., Manterola J., Cardona P. J., Ruiz J., Morera J. Risk factors for lower airway bacterial colonization in chronic bronchitis. Eur Respir J. 1999 Feb;13(2):338–342. doi: 10.1034/j.1399-3003.1999.13b20.x. [DOI] [PubMed] [Google Scholar]
  19. Murphy T. F., Sethi S. Bacterial infection in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1992 Oct;146(4):1067–1083. doi: 10.1164/ajrccm/146.4.1067. [DOI] [PubMed] [Google Scholar]
  20. Noguera A., Batle S., Miralles C., Iglesias J., Busquets X., MacNee W., Agustí A. G. Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax. 2001 Jun;56(6):432–437. doi: 10.1136/thorax.56.6.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Brien C., Guest P. J., Hill S. L., Stockley R. A. Physiological and radiological characterisation of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax. 2000 Aug;55(8):635–642. doi: 10.1136/thorax.55.8.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Osman I. M., Godden D. J., Friend J. A., Legge J. S., Douglas J. G. Quality of life and hospital re-admission in patients with chronic obstructive pulmonary disease. Thorax. 1997 Jan;52(1):67–71. doi: 10.1136/thx.52.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pitkin A. D., Roberts C. M., Wedzicha J. A. Arterialised earlobe blood gas analysis: an underused technique. Thorax. 1994 Apr;49(4):364–366. doi: 10.1136/thx.49.4.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prescott E., Lange P., Vestbo J. Chronic mucus hypersecretion in COPD and death from pulmonary infection. Eur Respir J. 1995 Aug;8(8):1333–1338. doi: 10.1183/09031936.95.08081333. [DOI] [PubMed] [Google Scholar]
  25. Ras G., Wilson R., Todd H., Taylor G., Cole P. Effect of bacterial products on neutrophil migration in vitro. Thorax. 1990 Apr;45(4):276–280. doi: 10.1136/thx.45.4.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saetta M., Turato G., Facchini F. M., Corbino L., Lucchini R. E., Casoni G., Maestrelli P., Mapp C. E., Ciaccia A., Fabbri L. M. Inflammatory cells in the bronchial glands of smokers with chronic bronchitis. Am J Respir Crit Care Med. 1997 Nov;156(5):1633–1639. doi: 10.1164/ajrccm.156.5.9701081. [DOI] [PubMed] [Google Scholar]
  27. Seemungal T. A., Donaldson G. C., Bhowmik A., Jeffries D. J., Wedzicha J. A. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000 May;161(5):1608–1613. doi: 10.1164/ajrccm.161.5.9908022. [DOI] [PubMed] [Google Scholar]
  28. Seemungal T. A., Donaldson G. C., Paul E. A., Bestall J. C., Jeffries D. J., Wedzicha J. A. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 May;157(5 Pt 1):1418–1422. doi: 10.1164/ajrccm.157.5.9709032. [DOI] [PubMed] [Google Scholar]
  29. Seemungal T. A., Harper-Owen R., Bhowmik A., Jeffries D. J., Wedzicha J. A. Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease. Eur Respir J. 2000 Oct;16(4):677–683. doi: 10.1034/j.1399-3003.2000.16d19.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seemungal T., Harper-Owen R., Bhowmik A., Moric I., Sanderson G., Message S., Maccallum P., Meade T. W., Jeffries D. J., Johnston S. L. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001 Nov 1;164(9):1618–1623. doi: 10.1164/ajrccm.164.9.2105011. [DOI] [PubMed] [Google Scholar]
  31. Sethi S., Murphy T. F. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev. 2001 Apr;14(2):336–363. doi: 10.1128/CMR.14.2.336-363.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sethi S., Muscarella K., Evans N., Klingman K. L., Grant B. J., Murphy T. F. Airway inflammation and etiology of acute exacerbations of chronic bronchitis. Chest. 2000 Dec;118(6):1557–1565. doi: 10.1378/chest.118.6.1557. [DOI] [PubMed] [Google Scholar]
  33. Smith C. B., Golden C., Klauber M. R., Kanner R., Renzetti A. Interactions between viruses and bacteria in patients with chronic bronchitis. J Infect Dis. 1976 Dec;134(6):552–561. doi: 10.1093/infdis/134.6.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Soler N., Ewig S., Torres A., Filella X., Gonzalez J., Zaubet A. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur Respir J. 1999 Nov;14(5):1015–1022. doi: 10.1183/09031936.99.14510159. [DOI] [PubMed] [Google Scholar]
  35. Staunton D. E., Merluzzi V. J., Rothlein R., Barton R., Marlin S. D., Springer T. A. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989 Mar 10;56(5):849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  36. Stockley R. A., O'Brien C., Pye A., Hill S. L. Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. Chest. 2000 Jun;117(6):1638–1645. doi: 10.1378/chest.117.6.1638. [DOI] [PubMed] [Google Scholar]
  37. Stănescu D., Sanna A., Veriter C., Kostianev S., Calcagni P. G., Fabbri L. M., Maestrelli P. Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax. 1996 Mar;51(3):267–271. doi: 10.1136/thx.51.3.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zalacain R., Sobradillo V., Amilibia J., Barrón J., Achótegui V., Pijoan J. I., Llorente J. L. Predisposing factors to bacterial colonization in chronic obstructive pulmonary disease. Eur Respir J. 1999 Feb;13(2):343–348. doi: 10.1034/j.1399-3003.1999.13b21.x. [DOI] [PubMed] [Google Scholar]